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BANACH SPACE II
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Abstract. For a Banach space E and a positive integer k, we study about three kinds
of numerical indices of E, the multilinear numerical index n

(k)
m (E), the symmetric

multilinear numerical index n
(k)
s (E) and the polynomial numerical index n

(k)
p (E).

First we show that n
(k)
I (E∗∗) ≤ n

(k)
I (E) for I = m, s and present some inequalities

among n
(k)
m (E), n

(k)
s (E) and n

(k)
p (E). We also prove that if E is a strictly convex

Banach space, then n
(k)
m (E) = 0 for every k ≥ 2.

Mathematics Subject Classification (2010): Primary 46A22, 46G20; Secondary 46G25.

Key words: Numerical radius, numerical index, multīlinear mappings, symmetric multi-
linear mappings, homogeneous polynomials.

1. Introduction. Throughout this paper K denotes either the complex field
C or the real field R. If the field is not specified the results are valid in both
cases. Let E and F be Banach spaces over the field K. We write BE and SE for
the closed unit ball and the unit sphere of E, respectively. The dual space of E
is denoted by E∗. We write Ek for the product E × · · · × E with k factors, for
some natural number k. We denote by L(kE : F ) the Banach space of continuous
k-linear mappings of Ek into F endowed with the norm

∥A∥ = sup {∥A(x1, . . . , xk)∥ : xj ∈ BE , j = 1, . . . , k}.

A ∈ L(kE : F ) is said to be symmetric if

A(x1, · · · , xk) = A(xσ(1), · · · , xσ(k))

for any x1, · · · , xk in E and any permutation σ of the first k natural numbers.
We denote by Ls(kE : F ) the closed subspace of all symmetric k-linear maps in
L(kE : F ). We define the symmetric k−linear mapping As : Ek → F (which we
call the symmetrization of A) by

As(x1, · · · , xk) =
1

k!

∑
σ

A(xσ(1), · · · , xσ(k))

∗This research was supported by the Basic Science Research Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology
(2013R1A1A2057788).
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for any x1, · · · , xk in E, where the summation is over the k! permutations σ of
the first k natural numbers. We denote L(kE : K) and Ls(kE : K) by L(kE)
and Ls(kE) respectively. A mapping P : E → F is said to be a continuous k-
homogeneous polynomial if there exists an A ∈ L(kE : F ) such that P (x) =
A(x, · · · , x) for all x ∈ E. For A ∈ L(kE : F ), we define the associated polynomial

Â : E → F by Â(x) = A(x, · · · , x) for x ∈ E. It is obvious that Â = Âs. We
denote by P(kE : F ) the Banach space of continuous k-homogeneous polynomials
of E into F endowed with the polynomial norm ∥P∥ = supx∈BE

∥P (x)∥. We denote

P(kE : K) by P(kE). We also note that ∥Â∥ ≤ ∥As∥ ≤ ∥A∥ for any A in L(kE :
F ). See [D] for a general background on the theory of polynomials on an infinite
dimensional Banach space.

In this paper we only consider the spaces L(kE : E),Ls(kE : E) and P(kE : E).
Let

Π(Ek) = { (x1, . . . , xk, x
∗) : x∗(xj) = 1, xj ∈ SE , x∗ ∈ SE∗ , j = 1, · · · , k}.

The numerical range of A ∈ L(kE : E) is defined by

W (A) := { x∗(A(x1, . . . , xk)) : (x1, . . . , xk, x
∗) ∈ Π(Ek)}

and the numerical radius of A ∈ L(kE : E) is defined by

v(A) := sup { |x∗(A(x1, . . . , xk))| : (x1, . . . , xk, x
∗) ∈ Π(Ek)}.

Similarly, for each P ∈ P(kE : E), the numerical range of P is defined by

W (P ) := {x∗(Px) : (x, x∗) ∈ Π(E1)}

and the numerical radius of P is defined by

v(P ) := sup {|λ| : λ ∈W (P )}.

Clearly we have v(A) ≤ ∥A∥, v(As) ≤ ∥As∥ and v(Â) ≤ ∥Â∥, for any A in L(kE :
E). It is obvious that

(∗) v(Â) ≤ v(As) ≤ v(A) (A ∈ L(kE : E))

as in case of norms of them. The following example shows that the inequalities in
(∗) can be strict: In fact, we define a continuous 2-linear map A : l1 → l1 by

A(x, y) = (
1

2
x1y1 + 2x1y2)e1 + (−1

2
x2y2 − x1y2)e2

for any x = (xi), y = (yi) ∈ l1, where e1 = (1, 0, 0, · · · ) and e2 = (0, 1, 0, 0, · · · ).
Then we have

As(x, y) = (
1

2
x1y1 + x1y2 + x2y1)e1 + (−1

2
x2y2 −

1

2
x1y2 −

1

2
x2y1)e2

and

Â(x) = (
1

2
x21 + 2x1x2)e1 + (−1

2
x22 − x1x2)e2.
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It is not difficult to show that v(Â) = 1
2 , ∥Â∥ = 1, v(As) = 3

2 = ∥As∥ and v(A) =

3 = ∥A∥. Thus v( Â

∥Â∥
) < v( As

∥As∥ ) = v( A
∥A∥ ). Note that ∥Â∥ < ∥As∥ < ∥A∥ and

v(Â) < v(As) < v(A).

In [CGKM2] the k−th polynomial numerical index of E, the constant n
(k)
p (E)

is defined by
n(k)p (E) := inf {v(P ) : P ∈ SP(kE:E)}.

Clearly 0 ≤ n
(k)
p (E) ≤ 1 We refer to [BD, CK, CGKM1–3, DMPW, FMP, K,

KMM, L, LMP, Lu, MP] for general information and background on the theory of
numerical index of Banach spaces.

In connection to n
(k)
p (E), very recently the author introduced [K] the new

concepts of the k-th numerical index and k-th symmetric numerical index of E,
generalizing to k-linear and symmetric k-linear maps, respectively the “classical”
numerical index defined by G. Lumer [Lu] in the sixties for linear operators. In [K]
the k-th multilinear numerical index of E is defined by

n(k)m (E) := inf {v(A) : A ∈ SL(kE:E)}

and the k-th symmetric multilinear numerical index of E is defined by

n(k)s (E) := inf {v(A) : A ∈ SLs(kE:E)}.

Clearly 0 ≤ n
(k)
m (E) ≤ 1, 0 ≤ n

(k)
s (E) ≤ 1. Since Ls(kE : E) is a closed subspace

of L(kE : E), we have n
(k)
m (E) ≤ n

(k)
s (E). Clearly n

(k)
m (E) (n

(k)
s (E) resp.) is

the greatest constant c ≥ 0 such that c∥A∥ ≤ v(A) for every A ∈ L(kE : E)

(A ∈ Ls(kE : E) resp.). Note that n
(k)
m (E) > 0 (n

(k)
s (E) > 0 resp) if and only if v

and ∥ · ∥ are equivalent norms on L(kE : E) (Ls(kE : E) resp). It is easy to verify

that if E1, E2 are isometrically isomorphic Banach spaces, then n
(k)
m (E1) = n

(k)
m (E2)

and n
(k)
s (E1) = n

(k)
s (E2). In this paper we show that n

(k)
I (E∗∗) ≤ n

(k)
I (E) for

I = m, s and present some inequalities among n
(k)
m (E), n

(k)
s (E) and n

(k)
p (E). We

also prove that if E is a strictly convex Banach space, then n
(k)
m (E) = 0 for every

k ≥ 2.

2. The inequality n
(k)
I (E∗∗) ≤ n

(k)
I (E) for I = m, s. Let E and F be Ba-

nach spaces. L ∈ L(kE : F ) has an extension L ∈ L(kE∗∗ : F ∗∗) to the bidual
E∗∗ of E, which is called an extension of L by the Aron-Berner method (see [AB]).
In fact, an extension of L, say, L is defined in the following way: We first start
with the complex-valued bounded k-linear map L ∈ L(kE). We can extend L to
an k-linear form L on the bidual E∗∗ in such a way that for each fixed j, 1 ≤ j ≤ k
and for each fixed x1, . . . , xj−1 ∈ E and zj+1, . . . , zm ∈ E∗∗, the linear form

z → L(x1, . . . , xj−1, z, zj+1, . . . , zk), z ∈ E∗∗,

is weak-star continuous. By this weak-star continuity L can be extended to an
k-linear form L on E∗∗, beginning with the last variable and working backwards to
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the first. It is not difficult to show that ∥L∥ = ∥L∥. It is also worth to remark that
L is not symmetric in general and that there may exist k! extensions of L to E∗∗ by
the Aron-Berner method. Next, for a vector-valued k-linear map L ∈ L(kE : F ),
an extension by the Aron-Berner method L ∈ L(kE∗∗ : F ∗∗) is defined as follows:
given z1, · · · , zk ∈ E∗∗ and w ∈ F ∗,

L(z1, · · · , zk)(w) = w ◦ L(z1, · · · , zk).

For x ∈ E, we define δx : E∗ → C by δx(x∗) = x∗(x) for each x∗ ∈ E∗. Then
δx ∈ E∗∗. Let us notice that a continuous k-linear map L : Ek → F is separately
(w*,w*)-continuous on Ek.

Theorem 2.1. Let P ∈ P(kE : E) (k ∈ N) with P̌ ∈ Ls(kE∗∗ : E∗∗), where
P̌ is the associated continuous symmetric k-linear map to P . Then P is (w*,
w*)-continuous on E if and only if P̌ is separately (w*, w*)-continuous on Ek.

Proof. (⇐): Let x
′′

0 ∈ E∗∗ and let (xα)Γ be a net in E such that (xα)Γ converges
weak* to x

′′

0 . Then the net ( P (xα) )Γ = ( P̌ (xα, · · · , xα) )Γ converges weak* to

P̌ (x
′′

0 , · · · , x
′′

0 ) = P̌ (x
′′

0 , · · · , x
′′

0 ) = P (x
′′

0 ).

(⇒): Claim: P̌ = P̌ .
For any x

′′ ∈ E∗∗, we have

̂̌
P (x

′′
) = P (x

′′
) = P̌ (x

′′

0 , · · · , x
′′

0 ) =
̂̌
P (x

′′

0 ).

Since by the hypothesis P̌ is a symmetric k-linear map, by the uniqueness of the
associated symmetric k-linear map to the polynomial P , we complete the proof of

claim. Let x
′′

1 , · · · , x
′′

k ∈ E∗∗ and let (x
(1)
α1 )Γ1 , · · · , (x

(k)
αk )Γk

be nets in E such that

for each i = 1, · · · , k, (x
(i)
αi )Γi converges weak* to x

′′

i . Then the net ( ϵ1x
(1)
α1 + · · ·+

ϵkx
(k)
αk )Γ1,··· ,Γk

converges weak* to ϵ1x
′′

1 + · · ·+ ϵkx
′′

k for any ϵ1, · · · , ϵk ∈ K. By the
polarization formula, the net

( P̌ (x(1)α1
, · · · , x(k)αk

) )Γ1,··· ,Γk

= (
1

2kk!

∑
ϵ1,··· ,ϵk=±1

ϵ1 · · · ϵk P (ϵ1x
(1)
α1

+ · · ·+ ϵkx
(k)
αk

) )Γ1,··· ,Γk

converges weak* to

1

2kk!

∑
ϵ1,··· ,ϵk=±1

ϵ1 · · · ϵk P (ϵ1x
′′

1 + · · ·+ ϵkx
′′

k) = P̌ (x
′′

1 , · · · , x
′′

k) = P̌ (x
′′

1 , · · · , x
′′

k).

2

Note that Corollary 2.15 of [CDKM2] shows that n
(k)
p (E∗∗) ≤ n(k)p (E). For the

k-multilinear numerical index and symmetric multilinear numerical index cases, we
get the analogous results, respectively.
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Theorem 2.2. Let E be a Banach space. Let A ∈ L(kE∗∗ : E∗∗) (k ∈ N) be such
that A|E is separately (w*, w*)-continuous. Let

lW (A) := {A(δx1 , · · · , δxk
)(x

′
) : (x1, · · · , xk, x

′
) ∈ Π(Ek)}.

Then lW (A) ⊂W (A) ⊂ lW (A), so lW (A) = W (A).

Proof. We may assume ∥A∥ = 1. Clearly lW (A) ⊂ W (A). Let 0 < ϵ < 1.
By the uniform continuity of A on (BE∗∗)k there is a 0 < δ < ϵ

3 such that for

(y
′′

1 , · · · , y
′′

k ), (z
′′

1 , · · · , z
′′

k ) ∈ (BE∗∗)k with ∥y′′

i − z
′′

i ∥ < δ for all i = 1, · · · , k we
have

(∗) ∥A(y
′′

1 , · · · , y
′′

k )−A(z
′′

1 , · · · , z
′′

k )∥ < ϵ

3
.

Let
LW (A) := {A(x

′′

1 , · · · , x
′′

k)(x
′
) : (x

′′

1 , · · · , x
′′

k , δx′ ) ∈ Π((E∗∗)k)}.

Claim 1: W (A) ⊂ LW (A).
Let λ ∈ W (A). Then λ = x

′′′

0 (A(x
′′

1 , · · · , x
′′

k)) for some (x
′′

1 , · · · , x
′′

k , x
′′′

0 ) ∈
Π((E∗∗)k). Since, by Goldstine’s theorem (BE∗ is w*-dense in BE∗∗∗), there exists
x

′

0 ∈ BE∗ such that

|δx′
0
(A(x

′′

1 , · · · , x
′′

k))− x
′′′

0 (A(x
′′

1 , · · · , x
′′

k))| = |A(x
′′

1 , · · · , x
′′

k)(x
′

0)− λ| < δ

and for all i = 1, · · · , k

|δx′
0
(x

′′

i )− x
′′′

0 (x
′′

i )| = |x
′′

i (x
′

0)− 1| < δ2

4
.

By the Bishop-Phelps-Bollobás theorem [B] there is y
′

0 ∈ BE∗ and y
′′

1 , · · · , y
′′

k ∈
BE∗∗ such that ∥x′

0 − y
′

0∥ < δ, and for all i = 1, · · · , k, ∥x′′

i − y
′′

i ∥ < δ and

(y
′′

1 , · · · , y
′′

k , δy′0
) ∈ Π((E∗∗)k). Then A(y

′′

1 , · · · , y
′′

k )(y
′

0) ∈ LW (A). It follows that

|λ−A(y
′′

1 , · · · , y
′′

k )(y
′

0)|
≤ |λ−A(x

′′

1 , · · · , x
′′

k)(x
′

0)|+ |A(x
′′

1 , · · · , x
′′

k)(x
′

0)−A(x
′′

1 , · · · , x
′′

k)(y
′

0)|
+ |A(x

′′

1 , · · · , x
′′

k)(y
′

0)−A(y
′′

1 , · · · , y
′′

k )(y
′

0)|
< δ + ∥A(x

′′

1 , · · · , x
′′

k)∥ ∥x
′

0 − y
′

0∥+ ∥A(x
′′

1 , · · · , x
′′

k)−A(y
′′

1 , · · · , y
′′

k )∥

< δ + δ +
ϵ

3
< ϵ,

showing λ ∈ LW (A). Thus W (A) ⊂ LW (A).

Claim 2: LW (A) ⊂ lW (A).
Let β ∈ LW (A). Then β = A(x

′′

1 , · · · , x
′′

k)(x
′

0) for some (x
′′

1 , · · · , x
′′

k , δx′
0
) ∈

Π((E∗∗)k). Let 0 < ϵ < 1. By Goldstine’s theorem (BE is w*-dense in BE∗∗), there

exist k-nets (x
(1)
α1 )Γ1 , · · · , (x

(k)
αk )Γk

in BE such that δ
x
(i)
αi

converges weak* to x
′′

i for

each i = 1, · · · , k. Then δx′
0
(δ
x
(i)
αi

) = x
′

0(x
(i)
αi ) converges to δx′

0
(x

′′

i ) = x
′′

i (x
′

0) = 1 for
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each i = 1, · · · , k. Let B0 = δx′
0
◦A ∈ L(kE∗∗). Since A ∈ L(kE∗∗ : E∗∗) is sepa-

rately (w*, w*)-continuous, B0(δ
x
(1)
α1

, · · · , δ
x
(k)
αk

) = A(δ
x
(1)
α1

, · · · , δ
x
(k)
αk

)(x
′

0) converges

to B0(x
′′

1 , · · · , x
′′

k) =

A(x
′′

1 , · · · , x
′′

k)(x
′

0) = β. Choose α̃1 ∈ Γ1, · · · , α̃k ∈ Γk such that

|β −A(x
(1)
α̃1
, · · · , x(k)α̃k

)(x
′

0)| < δ and |x
′

0(x
(i)
α̃i

)− 1| < δ2

4
for all i = 1, · · · , k.

By the Bishop-Phelps-Bollobás theorem, there is (y
(1)
α1 , · · · , y

(k)
αk , y

′

0) ∈ Π(Ek) such

that ∥x′

0 − y
′

0∥ < δ and ∥x(i)α̃i
− y(i)αi ∥ < δ for all i = 1, · · · , k.

Then A(y
(1)
α1 , · · · , y

(k)
αk )(y

′

0) ∈ lV (P ). We have

|β −A(y(1)α1
, · · · , y(k)αk

)(y
′

0)|

≤ |β −A(x
(1)
α̃1
, · · · , x(k)α̃k

)(x
′

0)|+ |A(x
(1)
α̃1
, · · · , x(k)α̃k

)(x
′

0)−A(y(1)α1
, · · · , y(k)αk

)(x
′

0)|

+ |A(y(1)α1
, · · · , y(k)αk

)(x
′

0)−A(y(1)α1
, · · · , y(k)αk

)(y
′

0)|

< δ + ∥A(x
(1)
α̃1
, · · · , x(k)α̃k

)−A(y(1)α1
, · · · , y(k)αk

)∥+ ∥A(y(1)α1
, · · · , y(k)αk

)∥ ∥x
′

0 − y
′

0∥
< 3δ < ϵ (by (∗)),

showing β ∈ lW (A). Thus LW (A) ⊂ lW (A). Thus by claims 1–2, W (A) ⊂ lW (A).
2

Corollary 2.3. Let E be a Banach space and k ∈ N. Let L ∈ L(kE : E). If L

is an extension of L to E∗∗ by the Aron-Berner method, then V (L) = V (L). Thus

v(L) = v(L) and n
(k)
m (E∗∗) ≤ n(k)m (E).

Theorem 2.4. Let E be a Banach space. Let L ∈ L(kE : E) (k ∈ N). If L
is an extension of L to E∗∗ by the Aron-Berner method, then v(Ls) = v(Ls) =
v((L)s). In particular, if L is a symmetric k-linear map, then v(L) = v((L)s). Thus

n
(k)
s (E∗∗) ≤ n(k)s (E).

Proof. We may assume ∥L∥ = 1. Then ∥Ls∥ ≤ 1. By Corollary 2.3, we have
v(Ls) = v(Ls) ≤ v((L)s) because L is an extension of L. We will show the reverse
inequality.

Claim: v((L)s) ≤ v(Ls).
Let 0 < ϵ < 1. By the uniform continuity of Ls on (BE)k there exists a 0 < δ < ϵ

4
such that for (y1, · · · , yk), (z1, · · · , zk) ∈ (BE)k with ∥yi − zi∥ < δ (i = 1, · · · , k),
we have

(∗) ∥Ls(y1, · · · , yk)− Ls(z1, · · · , zk)∥ < ϵ

4
.

Let (x
′′

1 , · · · , x
′′

k , x
′′′

0 ) ∈ Π((E∗∗)k). By the Goldstine theorem, there exist a net

(x
′

β)Λ in BE∗ and nets (x
(1)
α1 )α1∈Γ1 , · · · , (x

(k)
αk )αk∈Γk

in BE such that (x
(i)
αi )αi∈Γi
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converges w to∗ x
′′

i for all i = 1, · · · , k and (x
′

β)Λ converges w to∗ x
′′′

0 . Then we
have, for each i = 1, · · · , k,

(∗∗) lim
β

lim
αi

x
′

β(x(i)αi
) = lim

β
x

′

β(xi
′′) = x

′′′

0 (xi
′′) = 1.

Since (L)s(x
′′

1 , · · · , x
′′

k) ∈ E∗∗ and (x
′

β)Λ converges weak∗ to x
′′′

0 , we have

lim
β

(L)s(x
′′

1 , · · · , x
′′

k)(x
′

β) = x
′′′

0 ((L)s(x
′′

1 , · · · , x
′′

k)).

Choose β0 ∈ Λ such that for any β ≥ β0,

(∗ ∗ ∗) | x
′′′

0 ((L)s(x
′′

1 , · · · , x
′′

k))− (L)s(x
′′

1 , · · · , x
′′

k)(x
′

β) | < δ.

By (∗∗) there exist β1 ∈ Λ with β1 ≥ β0 and α̃1 ∈ Γ1, · · · , α̃k ∈ Γk such that for
any αi ∈ Γi with αi ≥ α̃i (i = 1, · · · , k), we have

|1− x
′

β1
(x(i)αi

)| < δ2

4
.

Since (L)s is separately (w*, w*)-continuous, there exist ˜̃α1 ∈ Γ1 with ˜̃α1 ≥ α̃1,
· · · , ˜̃αk ∈ Γk with ˜̃αk ≥ α̃k such that

(∗ ∗ ∗∗) |(L)s(x
′′

1 , · · · , x
′′

k)(x
′

β1
)− (L)s(x

(1)
˜̃α1
, · · · , x(k)˜̃αk

)(x
′

β1
)|

= |(L)s(x
′′

1 , · · · , x
′′

k)(x
′

β1
)− Ls(x(1)˜̃α1

, · · · , x(k)˜̃αk
)(x

′

β1
)| < δ.

By the Bishop-Phelps-Bollobás theorem, there is y
′

0 ∈ BE∗ and y1, · · · , yk ∈ BE
such that (y1, · · · , yk, y

′

0) ∈ Π(Ek), ∥x′

β1
− y′

0∥ < δ and for all i = 1, · · · , k, ∥x(i)˜̃αi
−

yi∥ < δ. Then Ls(y1, · · · , yk)(y
′

0) ∈ V (Ls). Then we have

| x
′′′

0 ((L)s(x
′′

1 , · · · , x
′′

k))− Ls(y1, · · · , yk)(y
′

0) |
≤ | x

′′′

0 ((L)s(x
′′

1 , · · · , x
′′

k))− (L)s(x
′′

1 , · · · , x
′′

k)(x
′

β1
) |

+ | (L)s(x
′′

1 , · · · , x
′′

k)(x
′

β1
)− (L)s(Ls(x

(1)
˜̃α1
, · · · , x(k)˜̃αk

))(x
′

β1
)|

+ |Ls(x(1)˜̃α1
, · · · , x(k)˜̃αk

)(x
′

β1
)− Ls(y1, · · · , yk)(x

′

β1
)|

+ |Ls(y1, · · · , yk)(x
′

β1
)− Ls(y1, · · · , yk)(y

′

0) |
< δ + δ + ∥ Ls(x ˜̃α1

, · · · , x ˜̃αk
)− Ls(y1, · · · , yk) ∥ (by (∗ ∗ ∗) and (∗ ∗ ∗∗))

+ ∥Ls(y1, · · · , yk) ∥ ∥x
′

β1
− y

′

0∥

< 2δ +
ϵ

4
+ ∥x

′

β1
− y

′

0∥ (by (∗))
< ϵ,

which shows the claim. Note that ∥L∥ = ∥(L)s∥ = ∥L∥ for all L ∈ Ls(kE : E).

Thus n
(k)
s (E∗∗) ≤ n(k)s (E). 2
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3. Inequalities between n(k)
s (E) and n(k)

p (E) and estimates for n
(k)
I (E)

for I = m, s, p.

Lemma 3.1. ([CK], Theorem 3.5) For each k ∈ N and each P ∈ P(kE : F ), we
have

v(P ) ≤ v(P̌ ) ≤
∑k
j=1 j

k
kCj

k!
v(P ),

where kCj = k!
j!(k−j)! .

Using Lemma 3.1, we obtain some inequalities between n
(k)
s (E) and n

(k)
p (E).

Theorem 3.2. For every Banach space E and every k ∈ N we have

k!

kk
n(k)p (E) ≤ n(k)s (E) ≤

∑k
j=1 j

k
kCj

k!
n(k)p (E).

Proof. Put M =
∑k

j=1 j
k

kCj

k! . It follows:

n(k)s (E) = inf
A∈Ls(kE:E),A ̸=0

v(
A

∥A∥
) = inf

A∈Ls(kE:E),A ̸=0

1

∥A∥
v(A)

≤ inf
A∈Ls(kE:E),A ̸=0

1

∥A∥
M v(Â) = inf

A∈Ls(kE:E),A ̸=0

∥Â∥
∥A∥

M v(
Â

∥Â∥
)

(by Lemma 3.1)

≤ M inf
P∈P(kE:E),P ̸=0

v(
P

∥P∥
) = M n(k)

p (E).

On the other hand we have

n(k)p (E) = inf
P∈P(kE:E),P ̸=0

v(
P

∥P∥
) = inf

P∈P(kE:E),P ̸=0

1

∥P∥
v(P )

≤ inf
P∈P(kE:E),P ̸=0

1

∥P∥
v(P̌ ) = inf

P∈P(kE:E),P ̸=0

∥P̌∥
∥P∥

v(
P̌

∥P̌∥
)

≤ inf
A∈Ls(kE:E),A ̸=0

kk

k!
v(

A

∥A∥
) =

kk

k!
n(k)s (E).

2

Corollary 3.3. We have n
(k)
s (E) = 0 if and only if n

(k)
p (E) = 0 for a Banach

space E.

Example 2.6 of [KMM] shows that there exists a real Banach space X0 such

that 0 = n
(k)
p (X∗∗0 ) < n

(k)
p (X0) for all k = 1, 2, · · · . By Theorem 3.2, we have

0 = n
(k)
s (X∗∗0 ) < n

(k)
s (X0) for all k = 1, 2, · · · . For E = X0, the inequality of

Theorem 2.4 is strict.
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Theorem 3.4. Let E = c0, l∞, l1, C(K) (K is a scattered compact Hausdorff

space), AD (AD is the disc algebra) and k ∈ N. Then n(k)m (E) = n
(k)
s (E) = 1.

Proof. By [CK, Theorem 3.1(i), Theorem 3.2], [CGKM1, Theorem 3.3] and
[CGKM2, Theorem 3.2] it follows that v(A) = ∥A∥ for every A ∈ L(kE : E). 2

Theorem 3.5. If n
(k)
p (E) = 1, then n

(k)
s (E) = 1 = n

(k)
m (E).

Proof. It follows from the fact of E = R by a result of [L]. 2

Note that the converse of Theorem 3.5 is not true in general since n
(2)
p (l1) =

1
2 , n

(2)
s (l1) = 1 = n

(2)
m (l1) by Theorem 3.4 and Corollary 2.5 of [KMM].

We get some lower bound for n
(k)
s (E) as follows:

Theorem 3.6. For every complex Banach space E and every k ≥ 2 we have

k
k2

1−k k! ≤ n(k)s (E).

Proof. It follows from the fact that k
k

1−k ≤ n
(k)
p (E) of [CGKM2, Theorem 2.3]

and Theorem 3.2. 2

It is obvious that v(Â) ≤ v(As) ≤ v(A) for any A in L(kE : E). The following
shows that these three quantities are equal in case E is a strictly convex Banach
space.

Theorem 3.7. Let k ∈ N and E a strictly convex Banach space. Then
(1) v(Â) = v(As) = v(A) for each A ∈ L(kE : E);

(2) n
(k)
m (E) = n

(k)
m (E∗∗) = 0 for any k ≥ 2;

(3) n
(k)
s (E) ≤ n(k)p (E).

Proof. (1): (x1, . . . , xk, x
∗) ∈ Π(Ek). then we have, for j = 2, · · · , k,

1 = |x∗(x1 + xj
2

)| ≤ ∥x1 + xj
2
∥ ≤ 1,

so ∥x1+xj

2 ∥ = 1, thus, by strict convexity of E, we have x1 = xj for all j = 2, · · · , k.
Let A ∈ L(kE : E). Since v(Â) ≤ v(As) ≤ v(A), it is enough to show that

v(A) ≤ v(Â). It follows that

v(A) = sup
(x1,...,xk,x∗)∈Π(Ek)

|x∗(A(x1, . . . , xk))|

= sup
(x1,x∗)∈Π(E1)

|x∗(A(x1, . . . , x1))|

= sup
(x1,x∗)∈Π(E1)

|x∗(Â(x1))| = v(Â).
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Thus v(Â) = v(A).

(2): Claim: n
(2)
m (E) = 0.

Let {u, v} be a linearly independent subset of SE and w ∈ SE . By the Hahn-
Banach theorem there exist x∗, y∗ in S∗E such that x∗(u) = 1 = y∗(v) and x∗(v) =
0 = y∗(u). We define a continuous bilinear mapping A0 ∈ L(2E : E) by

A0(x, y) = (x∗(x)y∗(y)− x∗(y)y∗(x))w for any x, y ∈ E.

Then Â0 = 0, so v(Â0) = 0. Since ∥A0(u, v)∥ = 1 we have ∥A0∥ ≥ 1. By (1),

0 ≤ n(2)m (E) ≤ v(
A0

∥A0∥
) =

v(A0)

∥A0∥
=
v(Â0)

∥A0∥
= 0.

By Theorem 2.1, we have n
(k)
m (E) = 0. By Corollary 2.3, we have

0 ≤ n(k)m (E∗∗) ≤ n(k)m (E) = 0.

(3): Let B ∈ Ls(kE : E) with ∥B∥ = 1. Let P = B̂. Then 0 < ∥P∥ ≤ 1. Since
v(P ) = v(B), by (1), it follows that

(∗) v(B) = v(P ) ≤ v(P )

∥P∥
= v(

P

∥P∥
).

By taking infimum over B ∈ Ls(kE : E) with ∥B∥ = 1 in (∗), we see that

n
(k)
s (E) ≤ n(k)p (E). 2

Corollary 3.8. Let k ∈ N and 1 < p < ∞. Suppose that (X,Ω, µ) is a measure
space. If E = Lp(µ) or Hilbert space, then

(1) v(Â) = v(As) = v(A) for each A ∈ L(kE : E);

(2) n
(k)
m (E) = 0 for any k ≥ 2;

(3) n
(k)
s (E) ≤ n(k)p (E).

Examples 3.9. In the cases of E = l1, l∞, Theorem 3.7 is not true.

(1) We define a continuous 2-linear mapping A : l1 → l1 by

A(x, y) = x1y2(e1 + e2)

for any x = (xi), y = (yi) ∈ l1. Then we have As(x, y) = x1y2+x2y1
2 (e1 + e2) and

Â(x) = x1x2(e1 + e2). It is easy to verify that v(Â) = 1
2 = ∥Â∥, v(As) = 1 = ∥As∥

and v(A) = 2 = ∥A∥. Thus v(Â) < v(As) < v(A).

(2) We define a continuous 2-linear mapping A : l∞ → l∞ by

A(x, y) = x1y1e1 + (x1y2 − x2y1)e2

for any x = (xi), y = (yi) ∈ l∞. Then we have As(x, y) = x1y1e1 and Â(x) = x21e1.
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Claim: v(Â) = v(As) = 1 = ∥As∥ = ∥Â∥ and v(A) = 2 = ∥A∥.
Indeed, it is easy to verify that v(Â) = v(As) = 1 = ∥As∥ = ∥Â∥. We have

2 = ∥ − e1 + 2e2∥ = ∥A(e1 + e2,−e1 + e2)∥ ≤ ∥A∥
= max{∥A(x, y)∥ : x = x1e1 + x2e2, y = y1e1 + y2e2 ∈ Sl∞}
≤ max

|x1|=|x2|=1=|y1|=|y2|
{ |x1| |y1|, |x1| |y2|+ |x2| |y1| }

≤ 2,

showing ∥A∥ = 2. Let x∗ = (0, 1, 0, 0, · · · ) ∈ Sl∗∞ . Then x∗(e1 + e2) = 1 = x∗(−e1 +
e2), so (e1 + e2,−e1 + e2, x

∗) ∈ Π(ℓ2∞). Then we have

2 = |x∗(−e1 + 2e2)| = |x∗(A(e1 + e2,−e1 + e2))| ≤ v(A) ≤ ∥A∥ = 2,

so v(A) = 2.

Theorem 3.10. For every k ∈ N and every 1 < p <∞ we have

n(k)s (ℓp)≤n(k)p (ℓp) ≤ (
p− 1

k + p− 1
)1−

1
p (

k

k + p− 1
)

k
p .

In particular, limk→∞ n
(k)
s (ℓp) = limk→∞ n

(k)
p (ℓp) = 0.

Proof. Let P (x) = xk2e1 for x = (xi) ∈ ℓp. Then P ∈ P(kℓp : ℓp) and ∥P∥ = 1. Put

f(x) = xp−1 (1 − xp)
k
p for 0 ≤ x ≤ 1. It is easy to show that f has its maximum

( p−1
k+p−1 )1−

1
p ( k

k+p−1 )
k
p at x = ( p−1

k+p−1 )
1
p . It follows that, by Corollary 3.8,

0 ≤ n(k)s (ℓp)≤n(k)p (ℓp) ≤ v(P )

= sup { | < (yi), P ((xi)) > | : (yi) ∈ Sℓq , (xi) ∈ Sℓp ,
∞∑
i=1

xiyi = 1 }

= max {|y1| |x2|k : 1 = |x1|p + |x2|p = |y1|q + |y2|q = x1y1 + x2y2 }
= max {|y1| |x2|k : y1 = xp−11 , 1 = |x1|p + |x2|p }

= max
0≤x≤1

{ xp−1(1− xp)
k
p } = (

p− 1

k + p− 1
)1−

1
p (

k

k + p− 1
)

k
p

≤ (
p− 1

k + p− 1
)1−

1
p → 0 as k →∞,

which completes the proof. 2

Corollary 3.11. Let H be a real Hilbert space of dimension greater than 1 and

k ∈ N. Then n(k)m (H) = n
(k)
s (H) = n

(k)
p (H) = 0.

Proof. Since n
(1)
p (H) = 0, by Proposition 2.5 of [CGKM2], n

(k)
p (H) = 0. By

Corollary 3.8 we have 0 ≤ n(k)m (H) ≤ n(k)s (H) ≤ n(k)p (H) = 0. 2
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Corollary 3.12. Let H be a complex Hilbert space of dimension greater than 1.

Then n
(2)
p (H) = n

(2)
s (H) ≤ 1

2 .

Proof. We claim that ∥P̌∥ = ∥P∥ for each P ∈ P(2H : H). Let P ∈ P(2H : H).
It is enough to show that ∥P̌∥ ≤ ∥P∥. Since P̌ (x, y) = 1

4P (x+ y)− 1
4P (x− y), we

have for x, y ∈ BH , by the parallelogram identity,

∥P̌ (x, y)∥ ≤ 1

4
∥P∥(∥x+ y∥2 + ∥x− y∥2),

showing ∥P̌∥ = ∥P∥. Thus we have n
(2)
s (H) = n

(2)
p (H). Since n

(1)
p (H) ≤ 1

2 , by

Proposition 2.5 of [CGKM2], n
(2)
s (H) = n

(2)
p (H) ≤ 1

2 . 2

For a Banach space E and k ∈ N, we define [K]

K(k : E) := inf {M > 0 : ∥A∥ ≤M ∥Â∥ for every A ∈ Ls(kE) }.

It is well-known that 1 ≤ K(k : E) ≤ kk

k! . By Lemma 3.1 of [K], we have

K(k : E) = inf { M > 0 : ∥A∥ ≤M ∥Â∥ for every A ∈ Ls(kE : E) }

=
1

inf { ∥Â∥ : A ∈ Ls(kE : E), ∥A∥ = 1 }
.

Lemma 3.13. ([K], Theorem 3.4) Let k ∈ N. Suppose that E is a Banach space
such that v(P̌ ) = v(P ) for each P ∈ P(kE : E), where P̌ is the associated contin-

uous symmetric k-linear mapping to P . Then n
(k)
p (E) ≤ K(k : E) n

(k)
s (E).

Lemma 3.14. ([S], Theorem 3) Let k ≥ 2.
Then: (1) For 1 ≤ p ≤ k

k−1 we have

K(k : Lp(µ)) ≤ k
k
p

k!
;

(2) for p≥k we have

K(k : Lp(µ)) ≤ k
k
q

k!
,

where q > 1 is the real number such that 1
p + 1

q = 1.

Theorem 3.15. Let k ≥ 2.
Then: (1) For 1 ≤ p ≤ k

k−1 we have

n(k)p (Lp(µ)) ≤ k
k
p

k!
n(k)s (Lp(µ));

(2) for p≥k we have

n(k)p (Lp(µ)) ≤ k
k
q

k!
n(k)s (Lp(µ)),

where q > 1 is the real number such that 1
p + 1

q = 1.
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Proof. It follows from Lemmas 3.13–14. 2

Corollary 3.16. Let k ∈ N be a power of 2. Then n
(k)
s (L2(µ)) = n

(k)
p (L2(µ)) for

a complex L2(µ) space.

Proof. By a result of Harris [H], K(k : L2(µ)) = 1 for a complex L2(µ) space.

Hence ∥A∥ = ∥Â∥ for any A ∈ L(kL2(µ) : L2(µ)). By Theorem 3.7, v(A) = v(Â)
for any A ∈ L(kL2(µ) : L2(µ)), which completes the proof. 2

Corollary 3.17. Let H be a separable Hilbert space of dimension greater than

1. Let k ∈ N be a power of 2. Then n
(k)
s (H) = n

(k)
p (H).

Proof. By the Riesz-Fischer theorem, H is isometrically isometric to l2. If H is
a real Hilbert space, by Corollary 3.11, we have

n(k)s (H) = 0 = n(k)p (H).

If H is a complex Hilbert space, by Corollary 3.16, we have

n(k)s (H) = n(k)s (l2) = n(k)p (l2) = n(k)p (H). 2

Proposition 3.18. Let I = m, s, p. Then

(1) n
(k)
I (Lp[0, 1]) is an increasing function of p over the range 1 ≤ p ≤ 2;

(2) n
(k)
I (Lp[0, 1]) is a decreasing function of p over the range 2 ≤ p <∞.

Proof. Let 1 ≤ p ≤ r ≤ 2. Note that Lr[0, 1] can be embedded isometrically into
Lp[0, 1] (see [LT], p. 139). Since if M and N are closed subspaces of a Banach

space E, then (M⊕l1N)∗ = M∗⊕l∞N∗, by Theorem 3.7 of [K], n
(k)
i (Lp[0, 1]) is

an increasing function of p over the range 1 ≤ p ≤ 2. Let p
′
, r

′ ∈ R such that
1
p + 1

p′
= 1 = 1

r + 1
r′
. Then 2 ≤ r

′ ≤ p
′
< ∞. Since (Lr[0, 1])∗ = Lr′ [0, 1]

can be embedded isometrically into (Lp[0, 1])∗ = Lp′ [0, 1], by Theorem 3.7 of [K],

n
(k)
I (Lp′ [0, 1]) ≤ n(k)I (Lr′ [0, 1]), showing (2). 2
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