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ABSTRACT. For a Banach space F and a positive integer k, we study about three kinds

of numerical indices of F, the multilinear numerical index ng,’f)(E), the symmetric

multilinear numerical index ngk>(E) and the polynomial numerical index nfgk)(E).
First we show that n'* (E**) < n{*)(E) for I = m,s and present some inequalities
among ng,]i)(E),ngk)(E) and nl(,m(E). We also prove that if E is a strictly convex

Banach space, then ngf)(E) =0 for every k > 2.

Mathematics Subject Classification (2010): Primary 46A22, 46G20; Secondary 46G25.
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1. Introduction. Throughout this paper K denotes either the complex field
C or the real field R. If the field is not specified the results are valid in both
cases. Let E and F be Banach spaces over the field K. We write Bg and Sg for
the closed unit ball and the unit sphere of E, respectively. The dual space of E
is denoted by E*. We write E* for the product E x --- x E with k factors, for
some natural number k. We denote by £(*E : F) the Banach space of continuous
k-linear mappings of E* into F' endowed with the norm

|A|| =sup {[|A(z1,...,2)|| :2; € Bg,j=1,...,k}.
A€ L*E : F) is said to be symmetric if
Ay, o) = A(Te1), 5 To(k))

for any x1, -+ ,z; in E and any permutation o of the first & natural numbers.
We denote by L,(*E : F) the closed subspace of all symmetric k-linear maps in
L(*E : F). We define the symmetric k—linear mapping A, : E¥ — F (which we
call the symmetrization of A) by

1
Ag(wy, - o) = EZA(%(U’”' s To(k))
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for any 1, -+, in F, where the summation is over the k! permutations o of
the first k& natural numbers. We denote L(*E : K) and L,(*E : K) by L(*E)
and L,(*F) respectively. A mapping P : E — F is said to be a continuous k-
homogeneous polynomial if there exists an A € L(*E : F) such that P(z) =
A(z,--+,x) forallz € E. For A € L(*E : F), we define the associated polynomial
A:E — F by A(z) = A(z,--- ,z) for # € E. It is obvious that A = A,. We
denote by P(*E : F) the Banach space of continuous k-homogeneous polynomials
of E into F' endowed with the polynomial norm ||P| = sup,c g, [|P(z)|. We denote

P(*E : K) by P(*E). We also note that ||A| < ||A,| < ||A]|| for any A in L(*E :
F). See [D] for a general background on the theory of polynomials on an infinite
dimensional Banach space.

In this paper we only consider the spaces L(*E : E),L;(*E : E) and P(*E : E).
Let

I(E") = { (z1,...,25,2%) : 2*(x;) =1, 2; € Sp, 2" € Sp~, j=1,--- ,k}.
The numerical range of A € L(*E : E) is defined by

WA) = { (A1, oon)) © (@1, e a0 27) € TI(EY)}
and the numerical radius of A € L(*E : E) is defined by
v(A) :=sup { |z*(A(z1,...,20))| : (z1,..., 25, 2%) € TI(EF)}.
Similarly, for each P € P(*E : E), the numerical range of P is defined by
W(P) := {z*(Pz) : (z,2%) € II(E*)}

and the numerical radius of P is defined by

v(P) :=sup {|A\: e W(P)}.

Clearly we have v(A) < || A, v(A,) < ||As| and v(A) < ||A]], for any A in L(*E :
E). Tt is obvious that

-~

(%) v(A) < v(As) <v(A) (Ae L(*E: E))

as in case of norms of them. The following example shows that the inequalities in
(%) can be strict: In fact, we define a continuous 2-linear map A : l; — Iy by

1 1
Alz,y) = (59012/1 +2x1y2)e1 + (—§x2y2 — T1Y2)e2

for any = = (z;),y = (y;) € l1, where e; = (1,0,0,---) and es = (0,1,0,0,---).
Then we have

1 1

1 1
As(z,y) = (§x1y1 + z1y2 + zoy1)er + (—5332:% — 3%z — §I2y1)€2

and

o~

1 1
Ar) = (iﬁ + 2x132)er + (—éxg — x172)e3.
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It is not difficult to show that (21\)
) =

3 = ||A4||. Thus v(HﬁH) < v(

v(A) < v(A,) < v(A).
In [CGKM?2] the k—th polynomial numerical index of E, the constant n( )( E)
is defined by

LAl =1,0(A,) = § = || A, and v(4) =
v(;4). Note that [|A] < || Al < [|A]| and

nl()k)(E) =1inf {v(P): P e SP(RE:E)}

Clearly 0 < n{¥)(E) < 1 We refer to [BD, CK, CGKM1-3, DMPW, FMP, K,
KMM, L, LMP, Lu, MP] for general information and background on the theory of
numerical index of Banach spaces.

In connection to nl(,k)(E), very recently the author introduced [K] the new
concepts of the k-th numerical index and k-th symmetric numerical index of E,
generalizing to k-linear and symmetric k-linear maps, respectively the “classical”
numerical index defined by G. Lumer [Lu] in the sixties for linear operators. In [K]
the k-th multilinear numerical index of E is defined by

n)(B) == inf {v(A): A€ Srppmp}
and the k-th symmetric multilinear numerical index of F is defined by
n{")(E) :=inf {v(A): A€ S, rp.m}-

Clearly 0 < nslrf)(E) <1,0<nl* )(E) < 1. Since L,(*E : E) is a closed subspace
of L(FE : E), we have n( )( E) < ngk)(E). Clearly n&,}f)(E) (ngk)(E) resp.) is
the greatest constant ¢ > 0 such that c||A|| < v(A) for every A € L(*E : E)
(A € Ly(*E : E) resp.). Note that n'f)(E) > 0 (n{"(E) > 0 resp) if and only if v
and || - || are equivalent norms on L(*E : E) (Ls(*E : E) resp). It is easy to verify
that if Fy, E'y are isometrically isomorphic Banach spaces, then nk )(E )= n,(qli)(Eg)
and nt* )(El) = n¥ )(Eg). In this paper we show that n(Ik)(E**) < ngk)(E) for
I = m,s and present some inequalities among n'’ (E), nk) (E) and nék)(E). We

also prove that if E is a strictly convex Banach space, then nik )( E) = 0 for every
k> 2.

2. The inequality n_(,k) (E**) < ngk) (E) for I = m,s. Let E and F be Ba-
nach spaces. L € L(*E : F) has an extension L € L(*E** : F**) to the bidual
E** of E, which is called an extension of L by the Aron-Berner method (see [AB]).
In fact, an extension of L, say, L is defined in the following way: We first start
with the complex-valued bounded k-linear map L € L(*E). We can extend L to
an k-linear form L on the bidual E** in such a way that for each fixed j, 1 < j <k
and for each fixed zy,...,z;_1 € F and zj41,...,2, € E**, the linear form

T * ok
Z—)L(.’I)l,...,$j71,2,2j+1,...,2k), z € B

is weak-star continuous. By this weak-star continuity L can be extended to an
k-linear form L on E**, beginning with the last variable and working backwards to
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the first. It is not difficult to show that ||L|| = ||L||. It is also worth to remark that
L is not symmetric in general and that there may exist k! extensions of L to E** by
the Aron-Berner method. Next, for a vector-valued k-linear map L € L(*E : F),
an extension by the Aron-Berner method L € L(*E** : F**) is defined as follows:
given z1,--- ,2; € E* and w € F*,

Ll )W) = wo Lz, -, 2).

For x € E, we define 0, : E* — C by d,(z*) = a*(x) for each z* € E*. Then
8. € E**. Let us notice that a continuous k-linear map L : E*¥ — F is separately

(w*,w*)-continuous on E¥.

THEOREM 2.1. Let P € P*E : E) (k € N) with Pe Ls(*E*™ : E**), where
P is the associated continuous symmetric k-linear map to P. Then P is (w*,

w*)-continuous on E if and only if P is separately (w*, w*)-continuous on E*.

Proof. (< ) Let z, € E** and let (z4)r be anet in E such that (24 )r converges
weak* to zy. Then the net ( P(z4) )r = ( P(%a, -+ ,24) )r converges weak* to

P(xg,-+ ,7) :ﬁ(l’of" 370) P(xo)

(=): Claim: P=7.
For any z € E**, we have

P(a") = P(a") = Plag, - o) = Plog).

Since by the hypothesis Pisa symmetric k-linear map, by the uniqueness of the
associated symmetric k-linear map to the polynomial P, we complete the proof of

claim. Let ), - ,z, € E** and let (37((111))1“1, e ,(xgi,))pk be nets in E such that
foreachi=1,--- K, (x((;))p converges weak* to x; . Then the net ( 6125((111) +-o
ekx&kk) )Ty, T, converges weak* to elaslll + - —l—ekx; for any €1, , €, € K. By the

polarization formula, the net

( P(xgvll)7 T (k)) )FI; g

1
=( S Z €1 € P(Glxgl) 4t 6kag((lkk)) )Ty T
’ 1,0 ,€p=2%1

converges weak* to

ok k! Y a-a Pl +-+amy) = Play, - xp) = Play, - a).
Ceq,ep=%1 O

Note that Corollary 2.15 of [CDKM?2] shows that n,(,k)(E**) < n,()k)(E). For the
k-multilinear numerical index and symmetric multilinear numerical index cases, we
get the analogous results, respectively.
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THEOREM 2.2. Let E be a Banach space. Let A € L(*E** : E**) (k € N) be such
that A|g is separately (w*, w*)-continuous. Let

’

IW(A) :={A(6gy, - 00,)(@ ) : (x1, -+ 2,2 ) € TI(E®)}.

Then IW(A) C W(A) C IW(A), so IW(A) = W(A).

Proof. ~ 'We may assume ||A|| = 1. Clearly IW(A) C W(A). Let 0 < € < 1.

By the uniform continuity of A on (Bp.+)" there is a 0 < § < & such that for

(yllla"' ay;)v(zllla"' 72114:) € (BE**)k with Hy;/ - Z;’” < ¢§ for all i = 13 7k we
haVe 1" " " 1" €
(*) ||A(yla""yk)_A(Zl>""Zk)H<§'

Let
LW (A) = {A(y, - ,z)(@) : (@), 2y, 8,0) € TI((E™)F)}

Claim 1: W(A) C LW(A).

Let A € W(A). Then A\ = z, (A(z},---,x,)) for some (z},---,x,,2,) €
I((E**)*). Since, by Goldstine’s theorem (Bg« is w*-dense in B+« ), there exists
o € B~ such that

" " " " "

10,0 (A, ) = xg (Alwy,--- ) = [A(Y, - 2 (@) = Al < 6
and for all i =1,--- ,k

2
" e

" ’ (5
o (@) = 2o ()] = | (29) — 1] < —-.

By the Bishop-Phelps-Bollobds theorem [B] there is yé € Bg+ and y,l/, e ,y; €
Bg-- such that ||z, — yol| < 6, and for all i = 1,--- k, ||lz; — ;| < & and
(Wi, »¥rs0,r) € TI((B*)%). Then A(yy,- -+ ,yy)(yy) € LW (A). Tt follows that

A=Ayl w0 (o)l

’ " ’ " 1" ’

< =AY m) (@) + A m) (@) — Ay @) (o)
+ AL ) (o) — AW k) W)

< S Az g — ol + AT z) — Alyy s )l
< 6+§+§<e,

showing A € LW (A). Thus W(A) C LW (A).

Claim 2: LW (A) C IW(A). ) )
Let p € LW(A). Then 8 = A(zy, - ,x;)(xy) for some (zq,--- ,xk,ézg) €
I((E**)*). Let 0 < € < 1. By Goldstine’s theorem (Bg is w*-dense in Bg--), there

exist k-nets (xfjf)pl, R (xgkk))pk in Bg such that §_¢) converges weak™ to xz; for

eachi=1,--- k. Then §z6(6z<i?) = mé)(xg,)) converges to d, (z;) =z (xy) = 1 for
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eachi=1,--- k. Let By = 5I60A € L(*E*). Since A € L(*E** : E**) is sepa-

rately (w*, w*)-continuous, Bo(d ), - ,0 ) = A(§_),---,0 (k))(l‘;)) converges
" " o Fok o o
to Bo(x1,~~~ axk) =
Az, -+ ,x)(zg) = B. Choose &1 € T'y,--- , & € I'y, such that

’ / 52
18— Al 2l (@) < § and [ag(2()) — 1] < T foralli=1- k.
By the Bishop—Phelps—Bollobés theorem there is (yg,l)7 e ,ygi), yo) € II(E*) such
that ||z, — yol < & and ||.13( —y | <Sforalli=1,-- k.
Then A(yg}l)7 e ,y&?)(yo) € IV (P). We have

18 =AY,y (y)]

k k
< 18- A@Y, e @) + AR, a8 (@) — ALY,y ) (o))
+ AW,y () — AW, ) ()]

k !’ !
< S+ AED, -z = A,y + 1AGY, -y g — voll
< 30 <e (by (%)),

showing 5 € IW(A). Thus LW (A) C IW(A). Thus by claims 1-2, W(A) C IW(A).
O

COROLLARY 2.3. Let E be a Banach space and k € N. Let L € L(*E : E). If L

is an extension of L to E** by the Aron-Berner method, then V(L) = V(L). Thus
v(L) = v(L) and n(k)(E**) < nk) (E).

is an extension of L to E** by the Aron-Berner method, then v(Ls) = v(Ls)
v((L)s). In particular, if L is a symmetric k-linear map, then v(L) = v((L)s). Thus
n® (B) < n{P(B).

THEOREM 2.4. Let E be a Banach space. Let L € L(*E : E) (k € N). If L

Proof. ~ We may assume ||L|| = 1. Then ||Li|]| < 1. By Corollary 2.3, we have

v(Ls) = v(Ls) < v((L)s) because L is an extension of L. We will show the reverse
inequality.

Claim: v((L)s) < v(Ls).

Let 0 < € < 1. By the uniform continuity of L; on (Bg)* there exists a0 < § < £
such that for (y1,---,yx), (21, -+, 2k) € (Br)¥ with [jy; — z]| <8 (i =1,--- k),
we have

€
(*) ||L8(y17 te ayk) - Ls(zh ce 7Zk)H < Z
Let (z),--- 2,2y ) € I((E**)¥). By the Goldstine theorem, there exist a net

(gc;g)A in Bg~ and nets (m&ll))alepl,--- ,(m&kk))akepk in Bg such that (x(()f?)aep
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converges w* to x;/ foralli =1,---,k and (ac;g)A converges w* to xg/. Then we
have, for each i =1,--- ,k,

(xx) hénlgnxé(acg)) = lilrgnx/ﬂ(xi”) =y (z) = 1.

Since (L)4(z7, - - ,x,) € E** and (x%)/\ converges weak* to z; , we have

_ 1" 1" ’ 1" 1" 1"

fim (L)s(zy, - 2p)(35) = 2 (L)s(xy, @)
Choose By € A such that for any 8 > Sy,

Gexn) | g (D)slay, o) — (Dslay, - ap)(@g) | <6

By () there exist 81 € A with 51 > fp and @y € I'1, -+ ,dg € 'y such that for
any a; € I'; with o; > @; (i =1,--- , k), we have

’

N =
1=, (2] < &

Sinceff)S is separately (w*, w*)-continuous, there exist a; € Iy with &y > aq,
-, ap € I'y, with & > ég such that

—_— 1" " ! — k !
(% ) (Ds(a)s - a)(wg,) = D)o@l 2l (), )]
R " " ! k ’
= |@)s(a), 2 (@) — Ls(g;f;l), . 7%3)(%” <

By the Bishop-Phelps-Bollobas theorem, there is y(/) € Bg« and y1,--- ,yr € Bg
such that (y1,--- Yk, yo) € II(EF), ||x/61 —yoll < dand foralli=1,--- ,k, ||xg) -
yill < 8. Then Ly(y1,--- ,yx)(yy) € V(Ls). Then we have

| o (D)s(@l, o)) = Lolyn, -+ ue) (o) |
< g (D)slays---ay) = (D)l ay) (wp,) |
+ | @)l wp)(wp,) = (D)s(Lo@l) o al)) ()|
+ Lo@l 28 @) — Loy w5,
+ ALs(s -y (@) = Lo(yrs--- ui) (o) |
< 040+ Lalwg,, o owg,) — Lalyn o ouw) | (by (sx) and (x5 xx))
el | Dz, — wol
< 25+ 5+ llzp, —woll (by ()
< €,

which shows the claim. Note that ||L|| = ||(L)s|| = || L] for all L € L(*E : E).
Thus i (E**) < 0P (E). o
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3. Inequalities between n{¥)(E) and n(k)(E) and estimates for nI )(E)
for I = m,s,p.

LeEMMA 3.1. ([CK], Theorem 3.5) For each k € N and each P € P(*E : F), we

have .
Zj:l j* kCj

o(P) <u(P) < =

v(P),
k!
where kC] = W

Using Lemma 3.1, we obtain some inequalities between n'* )( E) and n](gk)(E).

THEOREM 3.2. For every Banach space E and every k € N we have

2 n(B) < (B) < Ek‘ljkc ny(E).
Proof. Put M = M It follows:
" (E) AL, (kEfE ), A0 |i|) Aeﬁs(’“ig:fE),Aqéoﬁ v(4)
= Aeﬁs(kig:fE),A;éO @ M o(4) = Aeﬁs(klg:E),Agéo Hj:: U(S)
(by Lemma 3.1)
= M PeP("'iEn:gE)yP#OU(Hil;)H) - nl()k)(E).
On the other hand we have
n’(’k)(E) B PeP(ki‘E%),P#ov(ﬁ) - PeP(kiIg:gE),P:,éO ﬁ v(P)
S rerethy o TRT "0 = repoldly o Hin U(HPII)
= Aecs<32:fE>,A¢o]:: ”(|i|) - ]7; n" (E). 0

COROLLARY 3.3. We have n{* )( E) = 0 if and only if n](gk)(E) = 0 for a Banach
space E.

Example 2.6 of [KMM] shows that there exists a real Banach space Xy such

that 0 = nz(jk)(Xg*) < nl()k)(Xo) for all £ = 1,2,---. By Theorem 3.2, we have
0= ngk)(Xg*) < ngk)(Xo) for all k = 1,2,---. For E = X, the inequality of

Theorem 2.4 is strict.
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THEOREM 3.4. Let E = co,lo0,l1,C(K) (K is a scattered compact Hausdorff
space), Ap (Ap is the disc algebra) and k € N. Then n¥) (E) = ngk)(E) =1

Proof. By [CK, Theorem 3.1(i), Theorem 3.2], [CGKMI, Theorem 3.3] and
[CGKM2, Theorem 3.2] it follows that v(A) = ||A| for every A € L(*E : E). O

THEOREM 3.5. If n,(,k)(E) =1, then ngk)(E) =1= nS,’f)(E).
Proof. It follows from the fact of E =R by a result of [L]. O

Note that the converse of Theorem 3.5 is not true in general since n,(,z) (1) =
%,ng)(ll) =1= ng)(ll) by Theorem 3.4 and Corollary 2.5 of [KMM].

We get some lower bound for n{" (E) as follows:

THEOREM 3.6. For every complex Banach space E and every k > 2 we have
KT K < n®(E).

Proof. It follows from the fact that ETE < nék)(E) of [CGKM2, Theorem 2.3]
and Theorem 3.2. O

It is obvious that v(A) < v(A,) < v(A) for any A in L(*E : E). The following
shows that these three quantities are equal in case E is a strictly convex Banach
space.

THEOREM 3.7. Let k € N and E a strictly convex Banach space. Then
(1) v(A) = v(As) = v(A) for each A € L(*E : E);
(2) m(ji)(E) = ng,]i)(E**) =0 for any k > 2;
(3) nl(B) < nf(B).

Proof. (1): (21,...,7x,2*) € H(E¥). then we have, for j =2,--- , k,

«,/T1+T; r1+ xy
o () < 2 <,
S0 H%H = 1, thus, by strict convexity of E, we have 1 = z; forall j =2, | k.

Let A € L(*E : E). Since v(A) < v(4,) < v(A), it is enough to show that

-~

v(A) < v(A). Tt follows that
v(4) = sup lx* (A(xq, ... x))]|
(1,..yz,x*)EN(EF)

= sup |x* (A(x1,...,21))]
(x1,x*)EI(EL)

sup |2 (A(z1))| = v(A).
(z1,2*)€II(ET)
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Thus v(ﬁ) =v(A).
(2): Claim: n'2(E) =0.

Let {u,v} be a linearly independent subset of Sg and w € Sg. By the Hahn-
Banach theorem there exist 2*,y* in S}, such that z*(u) = 1 = y*(v) and z*(v) =
0 = y*(u). We define a continuous bilinear mapping 4¢ € L(*E : E) by

Ao(z,y) = (2" (2)y"(y) — 2" (y)y"(z))w for any z,y € E.
Then Ay = 0, so v(Ay) = 0. Since ||Ag(u,v)|| = 1 we have ||Aq| > 1. By (1),

Ay o(do) _v(Ao) _
F4oll™ 114l [ Aol

0 <nlP(E) <o

By Theorem 2.1, we have m(fi)(E) = 0. By Corollary 2.3, we have
0 <n®(E) <nP(E)=0.

(3): Let B € L (*E : E) with ||B|| = 1. Let P = B. Then 0 < ||P|| < 1. Since
v(P) =v(B), by (1), it follows that

*) v =V v(P):’Ui

By taking infimum over B € L (*E : E) with |B|| = 1 in (x), we see that
) (EB) < nlP(B). O

COROLLARY 3.8. Let k € N and 1 < p < co. Suppose that (X, 2, 1) is a measure
space. If E = L,(p) or Hilbert space, then

(1) v(A) = v(A,) = v(A) for each A € L(*E : E);
(2) ngf)(E) =0 for any k > 2;
(3) ) (B) < nf(B).

ExXAMPLES 3.9. In the cases of £ = [q,ls, Theorem 3.7 is not true.

(1) We define a continuous 2-linear mapping A : Iy — {1 by

A(z,y) = z1y2(e1 + e2)

fgr any © = (x;),y = (y;) € l;. Then we have As(z,y) = QE”’27;”7327“(61 + e2) and

A(x) = m122(e1 + €2). It is easy to verify that v(A) = L = || A, v(As) = 1 = || A,||

-~

and v(A) =2 = ||A]]. Thus v(A) < v(A4s) < v(A).

1
2

(2) We define a continuous 2-linear mapping A : loo — I by
A(r,y) = m1y1€1 + (T1Y2 — Tay1)ea

for any = (2;),y = (yi) € loo. Then we have A (z,y) = z1y1e1 and A(z) = 22e;.
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Claim:  v(A) = v(As) =1 =[|A,]| = |A]l and v(A) =2 = [[A].
Indeed, it is easy to verify that v(A4) = v(A4,) =1 = ||As|| = ||Al|. We have

2 = |[[—e1+2ef =|Ale1 + ez, —e1 +e2)| < [|A]
= max{||A(z,y)|| : = =m1e1 + 202,y = Y161 +Y2e2 € S}
< max Ul Jyals 2] lyel + [22| Jy1| }
|z1|=|z2|=1=|y1|=]y2|
< 2

)

showing [|A|| = 2. Let 2* = (0,1,0,0,---) € Si=_. Then 2*(e; +e2) = 1 = 2*(—e1 +
€2), 50 (€1 + ez, —e1 + ez, x*) € II(£2)). Then we have

2 = |x*(—e1 + 2e2)| = |z"(A(e1 + e, —e1 + €2))| < v(A) < ||A|| =2,
so v(A) = 2.

THEOREM 3.10. For every k € N and every 1 < p < co we have

-1 1 k k
W (g )<n®)(0,) < (—L— 2 y1=5 (— )5,
WP )< 6) < (B2 ()
In particular, limg_, o n( )(6 ) = limg 00 nl(jk) (¢p) =0.
Proof. Let P(z) = x261 for x = (x;) € £,. Then P € P(*¢, : £,) and ||P| = 1. Put
f(z) = 2P~1 (1 — 2P)7 for 0 < z < 1. It is easy to show that f has its maximum
(k_’;;il)l_% (ﬁ); at x = (k+ )P It follows that, by Corollary 3.8,

0 < n{PE,)<n () < v(P)
= sup { | < (), P((2:)) > | : (yi) € S, (@) €Sp,, D wiga=1}
i=1
= max {[y1] Je2|" © 1=|a1f’ +|22f” = [11]7 + |y2|? = 2151 + 2292 }
= max {[yi [w2]* g =27 1= [aafP + |2 }
1 1 k k
= P=1l(1 — gP = =5 »
gpax {2 ( 2P)e } = (,Hp )G
_1 1—1
< () ?»—=0ask—
- (k+p71) s °
which completes the proof. m|

COROLLARY 3.11. Let H be a real Hilbert space of dimension greater than 1 and
k € N. Then n{¥ (H) = n? (H) = n{¥ (1) = 0.

Proof.  Since nél)(H) = 0, by Proposition 2.5 of [CGKMZ2], nék) (H) = 0. By
Corollary 3.8 we have 0 < n(k)( H) < gk)(H) < n;,k)(H) =0. 0
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COROLLARY 3.12. Let H be a complex Hilbert space of dimension greater than 1.
Then ny) (H) = n$” (H) < L.

Proof. We claim that ||15||V: |P|| for each P € P(*H : H). Let P € P(*H : H).
It is enough to show that ||P|| < || P|. Since P(z,y) = 1 P(z +y) — 1 P(z —y), we
have for x,y € By, by the parallelogram identity,

- 1
1Pz, )l < 1PN+ yll* + = = yll*),

showing ||P|| = ||P||. Thus we have ngz)(H) =n
Proposition 2.5 of [CGKM2], ) (H) = n{? (H) <

. d

) (H). Since n\V(H) < 3, by

N|—

For a Banach space E and k € N, we define [K]
K(k:E):=inf {M >0: |A| <M HA\H for every A € L,(*E) }.
It is well-known that 1 < K(k: E) < kk—T By Lemma 3.1 of [K], we have

K(k:E) = inf { M>0: ||A| <M ||A| for every A € L,(*E: E) }
1
inf {||[A]: A€ L, (*E:E),|A|=1}

LemMA 3.13. ([K], Theorem 3.4) Let k € N. Suppose that I is a Banach space
such that v(P) = v(P) for each P € P(*E : E), where P is the associated contin-

uous symmetric k-linear mapping to P. Then nl(,k)(E) <K(k:E) ngk)(E)

LEMMA 3.14. ([S], Theorem 3) Let k > 2.
Then: (1) For 1 < p < % we have

(2) for p>k we have

where g > 1 is the real number such that
THEOREM 3.15. Let k > 2.
Then: (1) For1 <p< % we have

nLy() < 57 0 (L (0);

IN

(2) for p>k we have

Qe

WO (Ly(p)) < S (L),

where g > 1 is the real number such that
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Proof. It follows from Lemmas 3.13-14. O

COROLLARY 3.16. Let k € N be a power of 2. Then ngk)(Lg (1) = n,(,k)(Lg () for
a complex Lo(u) space.

Proof. By a result of Harris [H], K(k : Lo(n)) = 1 for a complex La(p) space.
Hence ||A|| = ||A] for any A € L(¥La(p) : La(p)). By Theorem 3.7, v(A) = v(A)
for any A € L(*La(p) : La(p)), which completes the proof. a

COROLLARY 3.17. Let H be a separable Hilbert space of dimension greater than
1. Let k € N be a power of 2. Then n{” (H) = n" (H).

Proof. By the Riesz-Fischer theorem, H is isometrically isometric to lo. If H is
a real Hilbert space, by Corollary 3.11, we have

n(H) = 0=n (H).
If H is a complex Hilbert space, by Corollary 3.16, we have

) (H) = 0 12) = ¥ (1) = P (1) :

ProrosiTiON 3.18. Let I = m,s,p. Then
(1) n(lk)(Lp[O, 1]) is an increasing function of p over the range 1 < p < 2;
(2) n(lk)(Lp[O, 1]) is a decreasing function of p over the range 2 < p < occ.

Proof. Let 1 <p <r <2. Note that L.[0,1] can be embedded isometrically into
L,[0,1] (see [LT], p. 139). Since if M and N are closed subspaces of a Banach
space E, then (M@, N)* = M*®; N*, by Theorem 3.7 of [K], nl(.k) (L,[0,1]) is
an increasing function of p over the range 1 < p < 2. Let p/,r/ € R such that
bty =1= 1+ % Then2 < v <p < oo Since (L[0,1])* = L,[0,1]
can be embedded isometrically into (L,[0,1])* = L,/ [0,1], by Theorem 3.7 of [K],

n? (L, [0,1)) < 0" (L, [0,1]), showing (2). =
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