Quaestiones Mathematicae

Three kinds of numerical indices of a Banach space II

Sung Guen Kim

To cite this article: Sung Guen Kim (2016) Three kinds of numerical indices of a Banach space II, Quaestiones Mathematicae, 39:2, 153-166, DOI: 10.2989/16073606.2015.1068236

To link to this article: http://dx.doi.org/10.2989/16073606.2015.1068236

Published online: 08 Oct 2015.

Submit your article to this journal

Article views: 26

View related articles

View Crossmark data 『

THREE KINDS OF NUMERICAL INDICES OF A BANACH SPACE II

Sung Guen Kim*
Department of Mathematics, Kyungpook National University, Daegu 702-701, Republic of Korea.
E-Mail sgk317@knu.ac.kr

Abstract. For a Banach space E and a positive integer k, we study about three kinds of numerical indices of E, the multilinear numerical index $n_{m}^{(k)}(E)$, the symmetric multilinear numerical index $n_{s}^{(k)}(E)$ and the polynomial numerical index $n_{p}^{(k)}(E)$. First we show that $n_{I}^{(k)}\left(E^{* *}\right) \leq n_{I}^{(k)}(E)$ for $I=m, s$ and present some inequalities among $n_{m}^{(k)}(E), n_{s}^{(k)}(E)$ and $n_{p}^{(k)}(E)$. We also prove that if E is a strictly convex Banach space, then $n_{m}^{(k)}(E)=0$ for every $k \geq 2$.

Mathematics Subject Classification (2010): Primary 46A22, 46G20; Secondary 46G25.
Key words: Numerical radius, numerical index, multilinear mappings, symmetric multilinear mappings, homogeneous polynomials.

1. Introduction. Throughout this paper \mathbb{K} denotes either the complex field \mathbb{C} or the real field \mathbb{R}. If the field is not specified the results are valid in both cases. Let E and F be Banach spaces over the field \mathbb{K}. We write B_{E} and S_{E} for the closed unit ball and the unit sphere of E, respectively. The dual space of E is denoted by E^{*}. We write E^{k} for the product $E \times \cdots \times E$ with k factors, for some natural number k. We denote by $\mathcal{L}\left({ }^{k} E: F\right)$ the Banach space of continuous k-linear mappings of E^{k} into F endowed with the norm

$$
\|A\|=\sup \left\{\left\|A\left(x_{1}, \ldots, x_{k}\right)\right\|: x_{j} \in B_{E}, j=1, \ldots, k\right\} .
$$

$A \in \mathcal{L}\left({ }^{k} E: F\right)$ is said to be symmetric if

$$
A\left(x_{1}, \cdots, x_{k}\right)=A\left(x_{\sigma(1)}, \cdots, x_{\sigma(k)}\right)
$$

for any x_{1}, \cdots, x_{k} in E and any permutation σ of the first k natural numbers. We denote by $\mathcal{L}_{s}\left({ }^{k} E: F\right)$ the closed subspace of all symmetric k-linear maps in $\mathcal{L}\left({ }^{k} E: F\right)$. We define the symmetric k-linear mapping $A_{s}: E^{k} \rightarrow F$ (which we call the symmetrization of A) by

$$
A_{s}\left(x_{1}, \cdots, x_{k}\right)=\frac{1}{k!} \sum_{\sigma} A\left(x_{\sigma(1)}, \cdots, x_{\sigma(k)}\right)
$$

[^0]for any x_{1}, \cdots, x_{k} in E, where the summation is over the k ! permutations σ of the first k natural numbers. We denote $\mathcal{L}\left({ }^{k} E: \mathbb{K}\right)$ and $\mathcal{L}_{s}\left({ }^{k} E: \mathbb{K}\right)$ by $\mathcal{L}\left({ }^{k} E\right)$ and $\mathcal{L}_{s}\left({ }^{k} E\right)$ respectively. A mapping $P: E \rightarrow F$ is said to be a continuous k homogeneous polynomial if there exists an $A \in \mathcal{L}\left({ }^{k} E: F\right)$ such that $P(x)=$ $A(x, \cdots, x)$ for all $x \in E$. For $A \in \mathcal{L}\left({ }^{k} E: F\right)$, we define the associated polynomial $\widehat{A}: E \rightarrow F$ by $\widehat{A}(x)=A(x, \cdots, x)$ for $x \in E$. It is obvious that $\widehat{A}=\widehat{A_{s}}$. We denote by $\mathcal{P}\left({ }^{k} E: F\right)$ the Banach space of continuous k-homogeneous polynomials of E into F endowed with the polynomial norm $\|P\|=\sup _{x \in B_{E}}\|P(x)\|$. We denote $\mathcal{P}\left({ }^{k} E: \mathbb{K}\right)$ by $\mathcal{P}\left({ }^{k} E\right)$. We also note that $\|\hat{A}\| \leq\left\|A_{s}\right\| \leq\|A\|$ for any A in $\mathcal{L}\left({ }^{k} E\right.$: $F)$. See [D] for a general background on the theory of polynomials on an infinite dimensional Banach space.

In this paper we only consider the spaces $\mathcal{L}\left({ }^{k} E: E\right), \mathcal{L}_{s}\left({ }^{k} E: E\right)$ and $\mathcal{P}\left({ }^{k} E: E\right)$. Let

$$
\Pi\left(E^{k}\right)=\left\{\left(x_{1}, \ldots, x_{k}, x^{*}\right): x^{*}\left(x_{j}\right)=1, x_{j} \in S_{E}, x^{*} \in S_{E^{*}}, j=1, \cdots, k\right\}
$$

The numerical range of $A \in \mathcal{L}\left({ }^{k} E: E\right)$ is defined by

$$
W(A):=\left\{x^{*}\left(A\left(x_{1}, \ldots, x_{k}\right)\right):\left(x_{1}, \ldots, x_{k}, x^{*}\right) \in \Pi\left(E^{k}\right)\right\}
$$

and the numerical radius of $A \in \mathcal{L}\left({ }^{k} E: E\right)$ is defined by

$$
v(A):=\sup \left\{\left|x^{*}\left(A\left(x_{1}, \ldots, x_{k}\right)\right)\right|:\left(x_{1}, \ldots, x_{k}, x^{*}\right) \in \Pi\left(E^{k}\right)\right\}
$$

Similarly, for each $P \in \mathcal{P}\left({ }^{k} E: E\right)$, the numerical range of P is defined by

$$
W(P):=\left\{x^{*}(P x):\left(x, x^{*}\right) \in \Pi\left(E^{1}\right)\right\}
$$

and the numerical radius of P is defined by

$$
v(P):=\sup \{|\lambda|: \lambda \in W(P)\}
$$

Clearly we have $v(A) \leq\|A\|, v\left(A_{s}\right) \leq\left\|A_{s}\right\|$ and $v(\widehat{A}) \leq\|\widehat{A}\|$, for any A in $\mathcal{L}\left({ }^{k} E\right.$: $E)$. It is obvious that

$$
\begin{equation*}
v(\widehat{A}) \leq v\left(A_{s}\right) \leq v(A) \quad\left(A \in \mathcal{L}\left({ }^{k} E: E\right)\right) \tag{*}
\end{equation*}
$$

as in case of norms of them. The following example shows that the inequalities in $(*)$ can be strict: In fact, we define a continuous 2 -linear map $A: l_{1} \rightarrow l_{1}$ by

$$
A(x, y)=\left(\frac{1}{2} x_{1} y_{1}+2 x_{1} y_{2}\right) e_{1}+\left(-\frac{1}{2} x_{2} y_{2}-x_{1} y_{2}\right) e_{2}
$$

for any $x=\left(x_{i}\right), y=\left(y_{i}\right) \in l_{1}$, where $e_{1}=(1,0,0, \cdots)$ and $e_{2}=(0,1,0,0, \cdots)$. Then we have

$$
A_{s}(x, y)=\left(\frac{1}{2} x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{1}\right) e_{1}+\left(-\frac{1}{2} x_{2} y_{2}-\frac{1}{2} x_{1} y_{2}-\frac{1}{2} x_{2} y_{1}\right) e_{2}
$$

and

$$
\widehat{A}(x)=\left(\frac{1}{2} x_{1}^{2}+2 x_{1} x_{2}\right) e_{1}+\left(-\frac{1}{2} x_{2}^{2}-x_{1} x_{2}\right) e_{2}
$$

It is not difficult to show that $v(\widehat{A})=\frac{1}{2},\|\widehat{A}\|=1, v\left(A_{s}\right)=\frac{3}{2}=\left\|A_{s}\right\|$ and $v(A)=$ $3=\|A\|$. Thus $v\left(\frac{\widehat{A}}{\|\widehat{A}\|}\right)<v\left(\frac{A_{s}}{\left\|A_{s}\right\|}\right)=v\left(\frac{A}{\|A\|}\right)$. Note that $\|\widehat{A}\|<\left\|A_{s}\right\|<\|A\|$ and $v(\widehat{A})<v\left(A_{s}\right)<v(A)$.

In [CGKM2] the k-th polynomial numerical index of E, the constant $n_{p}^{(k)}(E)$ is defined by

$$
n_{p}^{(k)}(E):=\inf \left\{v(P): P \in S_{\mathcal{P}(k): E)}\right\}
$$

Clearly $0 \leq n_{p}^{(k)}(E) \leq 1$ We refer to [BD, CK, CGKM1-3, DMPW, FMP, K, KMM, L, LMP, Lu, MP] for general information and background on the theory of numerical index of Banach spaces.

In connection to $n_{p}^{(k)}(E)$, very recently the author introduced $[K]$ the new concepts of the k-th numerical index and k-th symmetric numerical index of E, generalizing to k-linear and symmetric k-linear maps, respectively the "classical" numerical index defined by G. Lumer [Lu] in the sixties for linear operators. In $[\mathrm{K}]$ the k-th multilinear numerical index of E is defined by

$$
n_{m}^{(k)}(E):=\inf \left\{v(A): A \in S_{\mathcal{L}\left({ }^{k} E: E\right)}\right\}
$$

and the k-th symmetric multilinear numerical index of E is defined by

$$
n_{s}^{(k)}(E):=\inf \left\{v(A): A \in S_{\mathcal{L}_{s}\left({ }^{k} E: E\right)}\right\}
$$

Clearly $0 \leq n_{m}^{(k)}(E) \leq 1,0 \leq n_{s}^{(k)}(E) \leq 1$. Since $\mathcal{L}_{s}\left({ }^{k} E: E\right)$ is a closed subspace of $\mathcal{L}\left({ }^{k} E: E\right)$, we have $n_{m}^{(k)}(E) \leq n_{s}^{(k)}(E)$. Clearly $n_{m}^{(k)}(E)\left(n_{s}^{(k)}(E)\right.$ resp.) is the greatest constant $c \geq 0$ such that $c\|A\| \leq v(A)$ for every $A \in \mathcal{L}\left({ }^{k} E: E\right)$ $\left(A \in \mathcal{L}_{s}\left({ }^{k} E: E\right)\right.$ resp. $)$. Note that $n_{m}^{(k)}(E)>0\left(n_{s}^{(k)}(E)>0\right.$ resp) if and only if v and $\|\cdot\|$ are equivalent norms on $\mathcal{L}\left({ }^{k} E: E\right)\left(\mathcal{L}_{s}\left({ }^{k} E: E\right)\right.$ resp). It is easy to verify that if E_{1}, E_{2} are isometrically isomorphic Banach spaces, then $n_{m}^{(k)}\left(E_{1}\right)=n_{m}^{(k)}\left(E_{2}\right)$ and $n_{s}^{(k)}\left(E_{1}\right)=n_{s}^{(k)}\left(E_{2}\right)$. In this paper we show that $n_{I}^{(k)}\left(E^{* *}\right) \leq n_{I}^{(k)}(E)$ for $I=m, s$ and present some inequalities among $n_{m}^{(k)}(E), n_{s}^{(k)}(E)$ and $n_{p}^{(k)}(E)$. We also prove that if E is a strictly convex Banach space, then $n_{m}^{(k)}(E)=0$ for every $k \geq 2$.
2. The inequality $\boldsymbol{n}_{\boldsymbol{I}}^{(\boldsymbol{k})}\left(\boldsymbol{E}^{* *}\right) \leq \boldsymbol{n}_{\boldsymbol{I}}^{(\boldsymbol{k})}(\boldsymbol{E})$ for $\boldsymbol{I}=\boldsymbol{m}, s$. Let E and F be Banach spaces. $L \in \mathcal{L}\left({ }^{k} E: F\right)$ has an extension $\bar{L} \in \mathcal{L}\left({ }^{k} E^{* *}: F^{* *}\right)$ to the bidual $E^{* *}$ of E, which is called an extension of L by the Aron-Berner method (see [AB]). In fact, an extension of L, say, \bar{L} is defined in the following way: We first start with the complex-valued bounded k-linear map $L \in \mathcal{L}\left({ }^{k} E\right)$. We can extend L to an k-linear form \bar{L} on the bidual $E^{* *}$ in such a way that for each fixed $j, 1 \leq j \leq k$ and for each fixed $x_{1}, \ldots, x_{j-1} \in E$ and $z_{j+1}, \ldots, z_{m} \in E^{* *}$, the linear form

$$
z \rightarrow \bar{L}\left(x_{1}, \ldots, x_{j-1}, z, z_{j+1}, \ldots, z_{k}\right), \quad z \in E^{* *}
$$

is weak-star continuous. By this weak-star continuity L can be extended to an k-linear form \bar{L} on $E^{* *}$, beginning with the last variable and working backwards to
the first. It is not difficult to show that $\|L\|=\|\bar{L}\|$. It is also worth to remark that \bar{L} is not symmetric in general and that there may exist k ! extensions of L to $E^{* *}$ by the Aron-Berner method. Next, for a vector-valued k-linear map $L \in \mathcal{L}\left({ }^{k} E: F\right)$, an extension by the Aron-Berner method $\bar{L} \in \mathcal{L}\left({ }^{k} E^{* *}: F^{* *}\right)$ is defined as follows: given $z_{1}, \cdots, z_{k} \in E^{* *}$ and $w \in F^{*}$,

$$
\bar{L}\left(z_{1}, \cdots, z_{k}\right)(w)=\overline{w \circ L}\left(z_{1}, \cdots, z_{k}\right)
$$

For $x \in E$, we define $\delta_{x}: E^{*} \rightarrow \mathbb{C}$ by $\delta_{x}\left(x^{*}\right)=x^{*}(x)$ for each $x^{*} \in E^{*}$. Then $\delta_{x} \in E^{* *}$. Let us notice that a continuous k-linear map $L: E^{k} \rightarrow F$ is separately ($\mathrm{w}^{*}, \mathrm{w}^{*}$)-continuous on E^{k}.

Theorem 2.1. Let $P \in \mathcal{P}\left({ }^{k} E: E\right)(k \in \mathbb{N})$ with $\bar{P} \in \mathcal{L}_{s}\left({ }^{k} E^{* *}: E^{* *}\right)$, where \check{P} is the associated continuous symmetric k-linear map to P. Then P is (w^{*}, $\left.W^{*}\right)$-continuous on E if and only if \check{P} is separately $\left(w^{*}, w^{*}\right)$-continuous on E^{k}.

Proof. (\Leftarrow) : Let $x_{0}^{\prime \prime} \in E^{* *}$ and let $\left(x_{\alpha}\right)_{\Gamma}$ be a net in E such that $\left(x_{\alpha}\right)_{\Gamma}$ converges $\underline{w}^{\prime}{ }^{\prime}$ to $x_{0}^{\prime \prime}$. Then the net $\left(P\left(x_{\alpha}\right)\right)_{\Gamma}=\left(\check{P}\left(x_{\alpha}, \cdots, x_{\alpha}\right)\right)_{\Gamma}$ converges weak* to $\bar{P}\left(x_{0}^{\prime \prime}, \cdots, x_{0}^{\prime \prime}\right)=\check{\bar{P}}\left(x_{0}^{\prime \prime}, \cdots, x_{0}^{\prime \prime}\right)=\bar{P}\left(x_{0}^{\prime \prime}\right)$.
$(\Rightarrow):$ Claim: $\bar{P}=\check{\bar{P}}$.
For any $x^{\prime \prime} \in E^{* *}$, we have

$$
\widehat{\widetilde{\widetilde{P}}}\left(x^{\prime \prime}\right)=\bar{P}\left(x^{\prime \prime}\right)=\check{\bar{P}}\left(x_{0}^{\prime \prime}, \cdots, x_{0}^{\prime \prime}\right)=\widehat{\bar{\Gamma}}\left(x_{0}^{\prime \prime}\right)
$$

Since by the hypothesis \bar{P} is a symmetric k-linear map, by the uniqueness of the associated symmetric k-linear map to the polynomial \bar{P}, we complete the proof of claim. Let $x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime} \in E^{* *}$ and let $\left(x_{\alpha_{1}}^{(1)}\right)_{\Gamma_{1}}, \cdots,\left(x_{\alpha_{k}}^{(k)}\right)_{\Gamma_{k}}$ be nets in E such that for each $i=1, \cdots, k,\left(x_{\alpha_{i}}^{(i)}\right)_{\Gamma_{i}}$ converges weak* to $x_{i}^{\prime \prime}$. Then the net $\left(\epsilon_{1} x_{\alpha_{1}}^{(1)}+\cdots+\right.$ $\left.\epsilon_{k} x_{\alpha_{k}}^{(k)}\right)_{\Gamma_{1}, \cdots, \Gamma_{k}}$ converges weak* to $\epsilon_{1} x_{1}^{\prime \prime}+\cdots+\epsilon_{k} x_{k}^{\prime \prime}$ for any $\epsilon_{1}, \cdots, \epsilon_{k} \in \mathbb{K}$. By the polarization formula, the net

$$
\begin{aligned}
& \left(\check{P}\left(x_{\alpha_{1}}^{(1)}, \cdots, x_{\alpha_{k}}^{(k)}\right)\right)_{\Gamma_{1}, \cdots, \Gamma_{k}} \\
& \quad=\left(\frac{1}{2^{k} k!} \sum_{\epsilon_{1}, \cdots, \epsilon_{k}= \pm 1} \epsilon_{1} \cdots \epsilon_{k} P\left(\epsilon_{1} x_{\alpha_{1}}^{(1)}+\cdots+\epsilon_{k} x_{\alpha_{k}}^{(k)}\right)\right)_{\Gamma_{1}, \cdots, \Gamma_{k}}
\end{aligned}
$$

converges weak* to

$$
\frac{1}{2^{k} k!} \sum_{\epsilon_{1}, \cdots, \epsilon_{k}= \pm 1} \epsilon_{1} \cdots \epsilon_{k} \bar{P}\left(\epsilon_{1} x_{1}^{\prime \prime}+\cdots+\epsilon_{k} x_{k}^{\prime \prime}\right)=\check{\bar{P}}\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)=\overline{\bar{P}}\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)
$$

Note that Corollary 2.15 of [CDKM2] shows that $n_{p}^{(k)}\left(E^{* *}\right) \leq n_{p}^{(k)}(E)$. For the k-multilinear numerical index and symmetric multilinear numerical index cases, we get the analogous results, respectively.

Theorem 2.2. Let E be a Banach space. Let $A \in \mathcal{L}\left({ }^{k} E^{* *}: E^{* *}\right)(k \in \mathbb{N})$ be such that $\left.A\right|_{E}$ is separately $\left(w^{*}, w^{*}\right)$-continuous. Let

$$
l W(A):=\left\{A\left(\delta_{x_{1}}, \cdots, \delta_{x_{k}}\right)\left(x^{\prime}\right):\left(x_{1}, \cdots, x_{k}, x^{\prime}\right) \in \Pi\left(E^{k}\right)\right\}
$$

Then $l W(A) \subset W(A) \subset \overline{l W(A)}$, so $\overline{l W(A)}=\overline{W(A)}$.
Proof. We may assume $\|A\|=1$. Clearly $l W(A) \subset W(A)$. Let $0<\epsilon<1$. By the uniform continuity of A on $\left(B_{E^{* *}}\right)^{k}$ there is a $0<\delta<\frac{\epsilon}{3}$ such that for $\left(y_{1}^{\prime \prime}, \cdots, y_{k}^{\prime \prime}\right),\left(z_{1}^{\prime \prime}, \cdots, z_{k}^{\prime \prime}\right) \in\left(B_{E^{* *}}\right)^{k}$ with $\left\|y_{i}^{\prime \prime}-z_{i}^{\prime \prime}\right\|<\delta$ for all $i=1, \cdots, k$ we have

$$
(*)\left\|A\left(y_{1}^{\prime \prime}, \cdots, y_{k}^{\prime \prime}\right)-A\left(z_{1}^{\prime \prime}, \cdots, z_{k}^{\prime \prime}\right)\right\|<\frac{\epsilon}{3}
$$

Let

$$
L W(A):=\left\{A\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\left(x^{\prime}\right):\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}, \delta_{x^{\prime}}\right) \in \Pi\left(\left(E^{* *}\right)^{k}\right)\right\}
$$

Claim 1: $W(A) \subset \overline{L W(A)}$.
Let $\lambda \in W(A)$. Then $\lambda=x_{0}^{\prime \prime \prime}\left(A\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\right)$ for some $\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}, x_{0}^{\prime \prime \prime}\right) \in$ $\Pi\left(\left(E^{* *}\right)^{k}\right)$. Since, by Goldstine's theorem ($B_{E^{*}}$ is w*-dense in $B_{E^{* * *}}$), there exists $x_{0}^{\prime} \in B_{E^{*}}$ such that

$$
\left|\delta_{x_{0}^{\prime}}\left(A\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\right)-x_{0}^{\prime \prime \prime}\left(A\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\right)\right|=\left|A\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\left(x_{0}^{\prime}\right)-\lambda\right|<\delta
$$

and for all $i=1, \cdots, k$

$$
\left|\delta_{x_{0}^{\prime}}\left(x_{i}^{\prime \prime}\right)-x_{0}^{\prime \prime \prime}\left(x_{i}^{\prime \prime}\right)\right|=\left|x_{i}^{\prime \prime}\left(x_{0}^{\prime}\right)-1\right|<\frac{\delta^{2}}{4}
$$

By the Bishop-Phelps-Bollobás theorem $[\mathrm{B}]$ there is $y_{0}^{\prime} \in B_{E^{*}}$ and $y_{1}^{\prime \prime}, \cdots, y_{k}^{\prime \prime} \in$ $B_{E^{* *}}$ such that $\left\|x_{0}^{\prime}-y_{0}^{\prime}\right\|<\delta$, and for all $i=1, \cdots, k,\left\|x_{i}^{\prime \prime}-y_{i}^{\prime \prime}\right\|<\delta$ and $\left(y_{1}^{\prime \prime}, \cdots, y_{k}^{\prime \prime}, \delta_{y_{0}^{\prime}}\right) \in \Pi\left(\left(E^{* *}\right)^{k}\right)$. Then $A\left(y_{1}^{\prime \prime}, \cdots, y_{k}^{\prime \prime}\right)\left(y_{0}^{\prime}\right) \in L W(A)$. It follows that

$$
\begin{aligned}
& \left|\lambda-A\left(y_{1}^{\prime \prime}, \cdots, y_{k}^{\prime \prime}\right)\left(y_{0}^{\prime}\right)\right| \\
\leq & \left|\lambda-A\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\left(x_{0}^{\prime}\right)\right|+\left|A\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\left(x_{0}^{\prime}\right)-A\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\left(y_{0}^{\prime}\right)\right| \\
+ & \left|A\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\left(y_{0}^{\prime}\right)-A\left(y_{1}^{\prime \prime}, \cdots, y_{k}^{\prime \prime}\right)\left(y_{0}^{\prime}\right)\right| \\
< & \delta+\left\|A\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\right\|\left\|x_{0}^{\prime}-y_{0}^{\prime}\right\|+\left\|A\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)-A\left(y_{1}^{\prime \prime}, \cdots, y_{k}^{\prime \prime}\right)\right\| \\
< & \delta+\delta+\frac{\epsilon}{3}<\epsilon,
\end{aligned}
$$

showing $\lambda \in \overline{L W(A)}$. Thus $W(A) \subset \overline{L W(A)}$.
Claim 2: $\quad L W(A) \subset \overline{l W(A)}$.
Let $\beta \in L W(A)$. Then $\beta=A\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\left(x_{0}^{\prime}\right)$ for some $\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}, \delta_{x_{0}^{\prime}}\right) \in$ $\Pi\left(\left(E^{* *}\right)^{k}\right)$. Let $0<\epsilon<1$. By Goldstine's theorem (B_{E} is w^{*}-dense in $B_{E^{* *}}$), there exist k-nets $\left(x_{\alpha_{1}}^{(1)}\right)_{\Gamma_{1}}, \cdots,\left(x_{\alpha_{k}}^{(k)}\right)_{\Gamma_{k}}$ in B_{E} such that $\delta_{x_{\alpha_{i}}^{(i)}}$ converges weak ${ }^{*}$ to $x_{i}^{\prime \prime}$ for each $i=1, \cdots, k$. Then $\delta_{x_{0}^{\prime}}\left(\delta_{x_{\alpha_{i}}^{(i)}}\right)=x_{0}^{\prime}\left(x_{\alpha_{i}}^{(i)}\right)$ converges to $\delta_{x_{0}^{\prime}}\left(x_{i}^{\prime \prime}\right)=x_{i}^{\prime \prime}\left(x_{0}^{\prime}\right)=1$ for
each $i=1, \cdots, k$. Let $B_{0}=\delta_{x_{0}^{\prime}} \circ A \in \mathcal{L}\left({ }^{k} E^{* *}\right)$. Since $A \in \mathcal{L}\left({ }^{k} E^{* *}: E^{* *}\right)$ is separately $\left(\mathrm{w}^{*}, \mathrm{w}^{*}\right)$-continuous, $B_{0}\left(\delta_{x_{\alpha_{1}}^{(1)}}, \cdots, \delta_{x_{\alpha_{k}}^{(k)}}\right)=A\left(\delta_{x_{\alpha_{1}}^{(1)}}, \cdots, \delta_{x_{\alpha_{k}}^{(k)}}\right)\left(x_{0}^{\prime}\right)$ converges to $B_{0}\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)=$ $A\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\left(x_{0}^{\prime}\right)=\beta$. Choose $\tilde{\alpha}_{1} \in \Gamma_{1}, \cdots, \tilde{\alpha}_{k} \in \Gamma_{k}$ such that

$$
\left|\beta-A\left(x_{\tilde{\alpha}_{1}}^{(1)}, \cdots, x_{\tilde{\alpha}_{k}}^{(k)}\right)\left(x_{0}^{\prime}\right)\right|<\delta \text { and }\left|x_{0}^{\prime}\left(x_{\tilde{\alpha}_{i}}^{(i)}\right)-1\right|<\frac{\delta^{2}}{4} \text { for all } i=1, \cdots, k
$$

By the Bishop-Phelps-Bollobás theorem, there is $\left(y_{\alpha_{1}}^{(1)}, \cdots, y_{\alpha_{k}}^{(k)}, y_{0}^{\prime}\right) \in \Pi\left(E^{k}\right)$ such that $\left\|x_{0}^{\prime}-y_{0}^{\prime}\right\|<\delta$ and $\left\|x_{\tilde{\alpha}_{i}}^{(i)}-y_{\alpha_{i}}^{(i)}\right\|<\delta$ for all $i=1, \cdots, k$.

Then $A\left(y_{\alpha_{1}}^{(1)}, \cdots, y_{\alpha_{k}}^{(k)}\right)\left(y_{0}^{\prime}\right) \in l V(P)$. We have

$$
\begin{aligned}
& \left|\beta-A\left(y_{\alpha_{1}}^{(1)}, \cdots, y_{\alpha_{k}}^{(k)}\right)\left(y_{0}^{\prime}\right)\right| \\
\leq & \left|\beta-A\left(x_{\tilde{\alpha}_{1}}^{(1)}, \cdots, x_{\tilde{\alpha}_{k}}^{(k)}\right)\left(x_{0}^{\prime}\right)\right|+\left|A\left(x_{\tilde{\alpha}_{1}}^{(1)}, \cdots, x_{\tilde{\alpha}_{k}}^{(k)}\right)\left(x_{0}^{\prime}\right)-A\left(y_{\alpha_{1}}^{(1)}, \cdots, y_{\alpha_{k}}^{(k)}\right)\left(x_{0}^{\prime}\right)\right| \\
+ & \left|A\left(y_{\alpha_{1}}^{(1)}, \cdots, y_{\alpha_{k}}^{(k)}\right)\left(x_{0}^{\prime}\right)-A\left(y_{\alpha_{1}}^{(1)}, \cdots, y_{\alpha_{k}}^{(k)}\right)\left(y_{0}^{\prime}\right)\right| \\
< & \delta+\left\|A\left(x_{\tilde{\alpha}_{1}}^{(1)}, \cdots, x_{\tilde{\alpha}_{k}}^{(k)}\right)-A\left(y_{\alpha_{1}}^{(1)}, \cdots, y_{\alpha_{k}}^{(k)}\right)\right\|+\left\|A\left(y_{\alpha_{1}}^{(1)}, \cdots, y_{\alpha_{k}}^{(k)}\right)\right\|\left\|x_{0}^{\prime}-y_{0}^{\prime}\right\| \\
< & 3 \delta<\epsilon(\text { by }(*)),
\end{aligned}
$$

showing $\beta \in \overline{l W(A)}$. Thus $L W(A) \subset \overline{l W(A)}$. Thus by claims $1-2, W(A) \subset \overline{l W(A)}$.

Corollary 2.3. Let E be a Banach space and $k \in \mathbb{N}$. Let $L \in \mathcal{L}\left({ }^{k} E: E\right)$. If \bar{L} is an extension of L to $E^{* *}$ by the Aron-Berner method, then $\overline{V(L)}=\overline{V(\bar{L})}$. Thus $v(L)=v(\bar{L})$ and $n_{m}^{(k)}\left(E^{* *}\right) \leq n_{m}^{(k)}(E)$.

Theorem 2.4. Let E be a Banach space. Let $L \in \mathcal{L}\left({ }^{k} E: E\right)(k \in \mathbb{N})$. If \bar{L} is an extension of L to $E^{* *}$ by the Aron-Berner method, then $v\left(\overline{L_{s}}\right)=v\left(L_{s}\right)=$ $v\left((\bar{L})_{s}\right)$. In particular, if L is a symmetric k-linear map, then $v(\bar{L})=v\left((\bar{L})_{s}\right)$. Thus $n_{s}^{(k)}\left(E^{* *}\right) \leq n_{s}^{(k)}(E)$.

Proof. We may assume $\|L\|=1$. Then $\left\|L_{s}\right\| \leq 1$. By Corollary 2.3, we have $v\left(\overline{L_{s}}\right)=v\left(L_{s}\right) \leq v\left((\bar{L})_{s}\right)$ because \bar{L} is an extension of L. We will show the reverse inequality.

Claim: $v\left((\bar{L})_{s}\right) \leq v\left(\overline{L_{s}}\right)$.

Let $0<\epsilon<1$. By the uniform continuity of L_{s} on $\left(B_{E}\right)^{k}$ there exists a $0<\delta<\frac{\epsilon}{4}$ such that for $\left(y_{1}, \cdots, y_{k}\right),\left(z_{1}, \cdots, z_{k}\right) \in\left(B_{E}\right)^{k}$ with $\left\|y_{i}-z_{i}\right\|<\delta(i=1, \cdots, k)$, we have

$$
(*)\left\|L_{s}\left(y_{1}, \cdots, y_{k}\right)-L_{s}\left(z_{1}, \cdots, z_{k}\right)\right\|<\frac{\epsilon}{4}
$$

Let $\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}, x_{0}^{\prime \prime \prime}\right) \in \Pi\left(\left(E^{* *}\right)^{k}\right)$. By the Goldstine theorem, there exist a net $\left(x_{\beta}^{\prime}\right)_{\Lambda}$ in $B_{E^{*}}$ and nets $\left(x_{\alpha_{1}}^{(1)}\right)_{\alpha_{1} \in \Gamma_{1}}, \cdots,\left(x_{\alpha_{k}}^{(k)}\right)_{\alpha_{k} \in \Gamma_{k}}$ in B_{E} such that $\left(x_{\alpha_{i}}^{(i)}\right)_{\alpha_{i} \in \Gamma_{i}}$
converges w^{*} to $x_{i}^{\prime \prime}$ for all $i=1, \cdots, k$ and $\left(x_{\beta}^{\prime}\right)_{\Lambda}$ converges w^{*} to $x_{0}^{\prime \prime \prime}$. Then we have, for each $i=1, \cdots, k$,

$$
(* *) \quad \lim _{\beta} \lim _{\alpha_{i}} x_{\beta}^{\prime}\left(x_{\alpha_{i}}^{(i)}\right)=\lim _{\beta} x_{\beta}^{\prime}\left(x_{i}^{\prime \prime}\right)=x_{0}^{\prime \prime \prime}\left(x_{i}{ }^{\prime \prime}\right)=1
$$

Since $(\bar{L})_{s}\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right) \in E^{* *}$ and $\left(x_{\beta}^{\prime}\right)_{\Lambda}$ converges weak* to $x_{0}^{\prime \prime \prime}$, we have

$$
\lim _{\beta}(\bar{L})_{s}\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\left(x_{\beta}^{\prime}\right)=x_{0}^{\prime \prime \prime}\left((\bar{L})_{s}\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\right)
$$

Choose $\beta_{0} \in \Lambda$ such that for any $\beta \geq \beta_{0}$,

$$
(* * *)\left|x_{0}^{\prime \prime \prime}\left((\bar{L})_{s}\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\right)-(\bar{L})_{s}\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\left(x_{\beta}^{\prime}\right)\right|<\delta
$$

By ($* *$) there exist $\beta_{1} \in \Lambda$ with $\beta_{1} \geq \beta_{0}$ and $\tilde{\alpha_{1}} \in \Gamma_{1}, \cdots, \tilde{\alpha_{k}} \in \Gamma_{k}$ such that for any $\alpha_{i} \in \Gamma_{i}$ with $\alpha_{i} \geq \tilde{\alpha_{i}}(i=1, \cdots, k)$, we have

$$
\left|1-x_{\beta_{1}}^{\prime}\left(x_{\alpha_{i}}^{(i)}\right)\right|<\frac{\delta^{2}}{4}
$$

Since $(\bar{L})_{s}$ is separately $\left(\mathrm{w}^{*}, \mathrm{w}^{*}\right)$-continuous, there exist $\tilde{\tilde{\alpha}}_{1} \in \Gamma_{1}$ with $\tilde{\tilde{\alpha}}_{1} \geq \tilde{\alpha}_{1}$, $\cdots, \tilde{\tilde{\alpha}}_{k} \in \Gamma_{k}$ with $\tilde{\tilde{\alpha}}_{k} \geq \tilde{\alpha}_{k}$ such that

$$
\begin{aligned}
(* * * *) & \left|(\bar{L})_{s}\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\left(x_{\beta_{1}}^{\prime}\right)-(\bar{L})_{s}\left(x_{\tilde{\tilde{\alpha}}_{1}}^{(1)}, \cdots, x_{\tilde{\tilde{\alpha}}_{k}}^{(k)}\right)\left(x_{\beta_{1}}^{\prime}\right)\right| \\
= & \left|(\bar{L})_{s}\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\left(x_{\beta_{1}}^{\prime}\right)-L_{s}\left(x_{\tilde{\alpha}_{1}}^{(1)}, \cdots, x_{\tilde{\tilde{\alpha}}_{k}}^{(k)}\right)\left(x_{\beta_{1}}^{\prime}\right)\right|<\delta .
\end{aligned}
$$

By the Bishop-Phelps-Bollobás theorem, there is $y_{0}^{\prime} \in B_{E^{*}}$ and $y_{1}, \cdots, y_{k} \in B_{E}$ such that $\left(y_{1}, \cdots, y_{k}, y_{0}^{\prime}\right) \in \Pi\left(E^{k}\right),\left\|x_{\beta_{1}}^{\prime}-y_{0}^{\prime}\right\|<\delta$ and for all $i=1, \cdots, k, \| x_{\tilde{\alpha}_{i}}^{(i)}-$ $y_{i} \|<\delta$. Then $L_{s}\left(y_{1}, \cdots, y_{k}\right)\left(y_{0}^{\prime}\right) \in V\left(L_{s}\right)$. Then we have

$$
\begin{aligned}
& \left|x_{0}^{\prime \prime \prime}\left((\bar{L})_{s}\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\right)-L_{s}\left(y_{1}, \cdots, y_{k}\right)\left(y_{0}^{\prime}\right)\right| \\
\leq & \left|x_{0}^{\prime \prime \prime}\left((\bar{L})_{s}\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\right)-(\bar{L})_{s}\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\left(x_{\beta_{1}}^{\prime}\right)\right| \\
+ & \left|(\bar{L})_{s}\left(x_{1}^{\prime \prime}, \cdots, x_{k}^{\prime \prime}\right)\left(x_{\beta_{1}}^{\prime}\right)-(\bar{L})_{s}\left(L_{s}\left(x_{\tilde{\tilde{\alpha}}_{1}}^{(1)}, \cdots, x_{\tilde{\tilde{\alpha}}_{k}}^{(k)}\right)\right)\left(x_{\beta_{1}}^{\prime}\right)\right| \\
+ & \left|L_{s}\left(x_{\tilde{\tilde{\alpha}}_{1}}^{(1)}, \cdots, x_{\tilde{\tilde{\alpha}}_{k}}^{(k)}\right)\left(x_{\beta_{1}}^{\prime}\right)-L_{s}\left(y_{1}, \cdots, y_{k}\right)\left(x_{\beta_{1}}^{\prime}\right)\right| \\
+ & \left|L_{s}\left(y_{1}, \cdots, y_{k}\right)\left(x_{\beta_{1}}^{\prime}\right)-L_{s}\left(y_{1}, \cdots, y_{k}\right)\left(y_{0}^{\prime}\right)\right| \\
< & \delta+\delta+\left\|L_{s}\left(x_{\tilde{\alpha}_{1}}, \cdots, x_{\tilde{\tilde{\alpha}}_{k}}\right)-L_{s}\left(y_{1}, \cdots, y_{k}\right)\right\|(\text { by }(* * *) \text { and }(* * * *)) \\
+ & \left\|L_{s}\left(y_{1}, \cdots, y_{k}\right)\right\|\left\|x_{\beta_{1}}^{\prime}-y_{0}^{\prime}\right\| \\
< & 2 \delta+\frac{\epsilon}{4}+\left\|x_{\beta_{1}}^{\prime}-y_{0}^{\prime}\right\|(\text { by }(*)) \\
< & \epsilon
\end{aligned}
$$

which shows the claim. Note that $\|L\|=\left\|(\bar{L})_{s}\right\|=\|\bar{L}\|$ for all $L \in \mathcal{L}_{s}\left({ }^{k} E: E\right)$. Thus $n_{s}^{(k)}\left(E^{* *}\right) \leq n_{s}^{(k)}(E)$.

3. Inequalities between $n_{s}^{(k)}(E)$ and $n_{p}^{(k)}(E)$ and estimates for $n_{I}^{(k)}(E)$ for $I=m, s, p$.

Lemma 3.1. ([CK], Theorem 3.5) For each $k \in \mathbb{N}$ and each $P \in \mathcal{P}\left({ }^{k} E: F\right)$, we have

$$
v(P) \leq v(\check{P}) \leq \frac{\sum_{j=1}^{k} j^{k}{ }_{k} C_{j}}{k!} v(P)
$$

where ${ }_{k} C_{j}=\frac{k!}{j!(k-j)!}$.
Using Lemma 3.1, we obtain some inequalities between $n_{s}^{(k)}(E)$ and $n_{p}^{(k)}(E)$.
Theorem 3.2. For every Banach space E and every $k \in \mathbb{N}$ we have

$$
\frac{k!}{k^{k}} n_{p}^{(k)}(E) \leq n_{s}^{(k)}(E) \leq \frac{\sum_{j=1}^{k} j^{k}{ }_{k} C_{j}}{k!} n_{p}^{(k)}(E)
$$

Proof. Put $M=\frac{\sum_{j=1}^{k} j^{k}{ }_{k} C_{j}}{k!}$. It follows:

$$
\begin{aligned}
n_{s}^{(k)}(E) & =\inf _{A \in \mathcal{L}_{s}\left({ }^{k} E: E\right), A \neq 0} v\left(\frac{A}{\|A\|}\right)=\inf _{A \in \mathcal{L}_{s}\left({ }^{k} E: E\right), A \neq 0} \frac{1}{\|A\|} v(A) \\
& \leq \inf _{A \in \mathcal{L}_{s}\left({ }^{k} E: E\right), A \neq 0} \frac{1}{\|A\|} M v(\widehat{A})=\inf _{A \in \mathcal{L}_{s}\left({ }^{k} E: E\right), A \neq 0} \frac{\|\widehat{A}\|}{\|A\|} M v\left(\frac{\widehat{A}}{\|\widehat{A}\|}\right)
\end{aligned}
$$

(by Lemma 3.1)

$$
\leq \quad M \inf _{P \in \mathcal{P}\left({ }^{k} E: E\right), P \neq 0} v\left(\frac{P}{\|P\|}\right)=M n_{p}^{(k)}(E)
$$

On the other hand we have

$$
\begin{aligned}
n_{p}^{(k)}(E) & =\inf _{P \in \mathcal{P}\left({ }^{k} E: E\right), P \neq 0} v\left(\frac{P}{\|P\|}\right)=\inf _{P \in \mathcal{P}\left({ }^{k} E: E\right), P \neq 0} \frac{1}{\|P\|} v(P) \\
& \leq \inf _{P \in \mathcal{P}(k E: E), P \neq 0} \frac{1}{\|P\|} v(\check{P})=\inf _{P \in \mathcal{P}\left({ }^{k} E: E\right), P \neq 0} \frac{\|\check{P}\|}{\|P\|} v\left(\frac{\check{P}}{\|\check{P}\|}\right) \\
& \leq \inf _{A \in \mathcal{L}_{s}\left({ }^{k} E: E\right), A \neq 0} \frac{k^{k}}{k!} v\left(\frac{A}{\|A\|}\right)=\frac{k^{k}}{k!} n_{s}^{(k)}(E) .
\end{aligned}
$$

Corollary 3.3. We have $n_{s}^{(k)}(E)=0$ if and only if $n_{p}^{(k)}(E)=0$ for a Banach space E.

Example 2.6 of $[\mathrm{KMM}]$ shows that there exists a real Banach space X_{0} such that $0=n_{p}^{(k)}\left(X_{0}^{* *}\right)<n_{p}^{(k)}\left(X_{0}\right)$ for all $k=1,2, \cdots$. By Theorem 3.2, we have $0=n_{s}^{(k)}\left(X_{0}^{* *}\right)<n_{s}^{(k)}\left(X_{0}\right)$ for all $k=1,2, \cdots$. For $E=X_{0}$, the inequality of Theorem 2.4 is strict.

Theorem 3.4. Let $E=c_{0}, l_{\infty}, l_{1}, C(K)$ (K is a scattered compact Hausdorff space), A_{D} (A_{D} is the disc algebra) and $k \in \mathbb{N}$. Then $n_{m}^{(k)}(E)=n_{s}^{(k)}(E)=1$.

Proof. By [CK, Theorem 3.1(i), Theorem 3.2], [CGKM1, Theorem 3.3] and [CGKM2, Theorem 3.2] it follows that $v(A)=\|A\|$ for every $A \in \mathcal{L}\left({ }^{k} E: E\right)$.

Theorem 3.5. If $n_{p}^{(k)}(E)=1$, then $n_{s}^{(k)}(E)=1=n_{m}^{(k)}(E)$.
Proof. It follows from the fact of $E=\mathbb{R}$ by a result of [L].

Note that the converse of Theorem 3.5 is not true in general since $n_{p}^{(2)}\left(l_{1}\right)=$ $\frac{1}{2}, n_{s}^{(2)}\left(l_{1}\right)=1=n_{m}^{(2)}\left(l_{1}\right)$ by Theorem 3.4 and Corollary 2.5 of [KMM].

We get some lower bound for $n_{s}^{(k)}(E)$ as follows:
Theorem 3.6. For every complex Banach space E and every $k \geq 2$ we have

$$
k^{\frac{k^{2}}{1-k}} \quad k!\leq n_{s}^{(k)}(E)
$$

Proof. It follows from the fact that $k^{\frac{k}{1-k}} \leq n_{p}^{(k)}(E)$ of [CGKM2, Theorem 2.3] and Theorem 3.2.

It is obvious that $v(\hat{A}) \leq v\left(A_{s}\right) \leq v(A)$ for any A in $\mathcal{L}\left({ }^{k} E: E\right)$. The following shows that these three quantities are equal in case E is a strictly convex Banach space.

Theorem 3.7. Let $k \in \mathbb{N}$ and E a strictly convex Banach space. Then
(1) $v(\widehat{A})=v\left(A_{s}\right)=v(A)$ for each $A \in \mathcal{L}\left({ }^{k} E: E\right)$;
(2) $n_{m}^{(k)}(E)=n_{m}^{(k)}\left(E^{* *}\right)=0$ for any $k \geq 2$;
(3) $n_{s}^{(k)}(E) \leq n_{p}^{(k)}(E)$.

Proof. (1): $\left(x_{1}, \ldots, x_{k}, x^{*}\right) \in \Pi\left(E^{k}\right)$. then we have, for $j=2, \cdots, k$,

$$
1=\left|x^{*}\left(\frac{x_{1}+x_{j}}{2}\right)\right| \leq\left\|\frac{x_{1}+x_{j}}{2}\right\| \leq 1
$$

so $\left\|\frac{x_{1}+x_{j}}{2}\right\|=1$, thus, by strict convexity of E, we have $x_{1}=x_{j}$ for all $j=2, \cdots, k$. Let $A \in \mathcal{L}\left({ }^{k} E: E\right)$. Since $v(\hat{A}) \leq v\left(A_{s}\right) \leq v(A)$, it is enough to show that $v(A) \leq v(\widehat{A})$. It follows that

$$
\begin{aligned}
v(A) & =\sup _{\left(x_{1}, \ldots, x_{k}, x^{*}\right) \in \Pi\left(E^{k}\right)}\left|x^{*}\left(A\left(x_{1}, \ldots, x_{k}\right)\right)\right| \\
& =\sup _{\left(x_{1}, x^{*}\right) \in \Pi\left(E^{1}\right)}\left|x^{*}\left(A\left(x_{1}, \ldots, x_{1}\right)\right)\right| \\
& =\sup _{\left(x_{1}, x^{*}\right) \in \Pi\left(E^{1}\right)}\left|x^{*}\left(\widehat{A}\left(x_{1}\right)\right)\right|=v(\widehat{A}) .
\end{aligned}
$$

Thus $v(\widehat{A})=v(A)$.
(2): Claim: $n_{m}^{(2)}(E)=0$.

Let $\{u, v\}$ be a linearly independent subset of S_{E} and $w \in S_{E}$. By the HahnBanach theorem there exist x^{*}, y^{*} in S_{E}^{*} such that $x^{*}(u)=1=y^{*}(v)$ and $x^{*}(v)=$ $0=y^{*}(u)$. We define a continuous bilinear mapping $A_{0} \in \mathcal{L}\left({ }^{2} E: E\right)$ by

$$
A_{0}(x, y)=\left(x^{*}(x) y^{*}(y)-x^{*}(y) y^{*}(x)\right) w \text { for any } x, y \in E
$$

Then $\widehat{A_{0}}=0$, so $v\left(\widehat{A_{0}}\right)=0$. Since $\left\|A_{0}(u, v)\right\|=1$ we have $\left\|A_{0}\right\| \geq 1$. By (1),

$$
0 \leq n_{m}^{(2)}(E) \leq v\left(\frac{A_{0}}{\left\|A_{0}\right\|}\right)=\frac{v\left(A_{0}\right)}{\left\|A_{0}\right\|}=\frac{v\left(\widehat{A_{0}}\right)}{\left\|A_{0}\right\|}=0
$$

By Theorem 2.1, we have $n_{m}^{(k)}(E)=0$. By Corollary 2.3, we have

$$
0 \leq n_{m}^{(k)}\left(E^{* *}\right) \leq n_{m}^{(k)}(E)=0
$$

(3): Let $B \in \mathcal{L}_{s}\left({ }^{k} E: E\right)$ with $\|B\|=1$. Let $P=\widehat{B}$. Then $0<\|P\| \leq 1$. Since $v(P)=v(B)$, by (1), it follows that

$$
(*) \quad v(B)=v(P) \leq \frac{v(P)}{\|P\|}=v\left(\frac{P}{\|P\|}\right)
$$

By taking infimum over $B \in \mathcal{L}_{s}\left({ }^{k} E: E\right)$ with $\|B\|=1$ in $(*)$, we see that $n_{s}^{(k)}(E) \leq n_{p}^{(k)}(E)$.

Corollary 3.8. Let $k \in \mathbb{N}$ and $1<p<\infty$. Suppose that (X, Ω, μ) is a measure space. If $E=L_{p}(\mu)$ or Hilbert space, then
(1) $v(\widehat{A})=v\left(A_{s}\right)=v(A)$ for each $A \in \mathcal{L}\left({ }^{k} E: E\right)$;
(2) $n_{m}^{(k)}(E)=0$ for any $k \geq 2$;
(3) $n_{s}^{(k)}(E) \leq n_{p}^{(k)}(E)$.

Examples 3.9. In the cases of $E=l_{1}, l_{\infty}$, Theorem 3.7 is not true.
(1) We define a continuous 2-linear mapping $A: l_{1} \rightarrow l_{1}$ by

$$
A(x, y)=x_{1} y_{2}\left(e_{1}+e_{2}\right)
$$

for any $x=\left(x_{i}\right), y=\left(y_{i}\right) \in l_{1}$. Then we have $A_{s}(x, y)=\frac{x_{1} y_{2}+x_{2} y_{1}}{2}\left(e_{1}+e_{2}\right)$ and $\widehat{A}(x)=x_{1} x_{2}\left(e_{1}+e_{2}\right)$. It is easy to verify that $v(\widehat{A})=\frac{1}{2}=\|\widehat{A}\|, v\left(A_{s}\right)=1=\left\|A_{s}\right\|$ and $v(A)=2=\|A\|$. Thus $v(\widehat{A})<v\left(A_{s}\right)<v(A)$.
(2) We define a continuous 2-linear mapping $A: l_{\infty} \rightarrow l_{\infty}$ by

$$
A(x, y)=x_{1} y_{1} e_{1}+\left(x_{1} y_{2}-x_{2} y_{1}\right) e_{2}
$$

for any $x=\left(x_{i}\right), y=\left(y_{i}\right) \in l_{\infty}$. Then we have $A_{s}(x, y)=x_{1} y_{1} e_{1}$ and $\widehat{A}(x)=x_{1}^{2} e_{1}$.

Claim: $\quad v(\widehat{A})=v\left(A_{s}\right)=1=\left\|A_{s}\right\|=\|\widehat{A}\|$ and $v(A)=2=\|A\|$.
Indeed, it is easy to verify that $v(\widehat{A})=v\left(A_{s}\right)=1=\left\|A_{s}\right\|=\|\widehat{A}\|$. We have

$$
\begin{aligned}
2 & =\left\|-e_{1}+2 e_{2}\right\|=\left\|A\left(e_{1}+e_{2},-e_{1}+e_{2}\right)\right\| \leq\|A\| \\
& =\max \left\{\|A(x, y)\|: x=x_{1} e_{1}+x_{2} e_{2}, y=y_{1} e_{1}+y_{2} e_{2} \in S_{l_{\infty}}\right\} \\
& \leq \max _{\left|x_{1}\right|=\left|x_{2}\right|=1=\left|y_{1}\right|=\left|y_{2}\right|}\left\{\left|x_{1}\right|\left|y_{1}\right|,\left|x_{1}\right|\left|y_{2}\right|+\left|x_{2}\right|\left|y_{1}\right|\right\} \\
& \leq 2,
\end{aligned}
$$

showing $\|A\|=2$. Let $x^{*}=(0,1,0,0, \cdots) \in S_{l_{\infty}^{*}}$. Then $x^{*}\left(e_{1}+e_{2}\right)=1=x^{*}\left(-e_{1}+\right.$ $\left.e_{2}\right)$, so $\left(e_{1}+e_{2},-e_{1}+e_{2}, x^{*}\right) \in \Pi\left(\ell_{\infty}^{2}\right)$. Then we have

$$
2=\left|x^{*}\left(-e_{1}+2 e_{2}\right)\right|=\left|x^{*}\left(A\left(e_{1}+e_{2},-e_{1}+e_{2}\right)\right)\right| \leq v(A) \leq\|A\|=2
$$

so $v(A)=2$.
Theorem 3.10. For every $k \in \mathbb{N}$ and every $1<p<\infty$ we have

$$
n_{s}^{(k)}\left(\ell_{p}\right) \leq n_{p}^{(k)}\left(\ell_{p}\right) \leq\left(\frac{p-1}{k+p-1}\right)^{1-\frac{1}{p}}\left(\frac{k}{k+p-1}\right)^{\frac{k}{p}}
$$

In particular, $\lim _{k \rightarrow \infty} n_{s}^{(k)}\left(\ell_{p}\right)=\lim _{k \rightarrow \infty} n_{p}^{(k)}\left(\ell_{p}\right)=0$.
Proof. Let $P(x)=x_{2}^{k} e_{1}$ for $x=\left(x_{i}\right) \in \ell_{p}$. Then $P \in \mathcal{P}\left({ }^{k} \ell_{p}: \ell_{p}\right)$ and $\|P\|=1$. Put $f(x)=x^{p-1}\left(1-x^{p}\right)^{\frac{k}{p}}$ for $0 \leq x \leq 1$. It is easy to show that f has its maximum $\left(\frac{p-1}{k+p-1}\right)^{1-\frac{1}{p}}\left(\frac{k}{k+p-1}\right)^{\frac{k}{p}}$ at $x=\left(\frac{p-1}{k+p-1}\right)^{\frac{1}{p}}$. It follows that, by Corollary 3.8,

$$
\begin{aligned}
0 & \leq n_{s}^{(k)}\left(\ell_{p}\right) \leq n_{p}^{(k)}\left(\ell_{p}\right) \leq v(P) \\
& =\sup \left\{\left|<\left(y_{i}\right), P\left(\left(x_{i}\right)\right)>\right|:\left(y_{i}\right) \in S_{\ell_{q}},\left(x_{i}\right) \in S_{\ell_{p}}, \sum_{i=1}^{\infty} x_{i} y_{i}=1\right\} \\
& =\max \left\{\left|y_{1}\right|\left|x_{2}\right|^{k}: 1=\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}=\left|y_{1}\right|^{q}+\left|y_{2}\right|^{q}=x_{1} y_{1}+x_{2} y_{2}\right\} \\
& =\max \left\{\left|y_{1}\right|\left|x_{2}\right|^{k}: y_{1}=x_{1}^{p-1}, 1=\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}\right\} \\
& =\max _{0 \leq x \leq 1}\left\{x^{p-1}\left(1-x^{p}\right)^{\frac{k}{p}}\right\}=\left(\frac{p-1}{k+p-1}\right)^{1-\frac{1}{p}}\left(\frac{k}{k+p-1}\right)^{\frac{k}{p}} \\
& \leq\left(\frac{p-1}{k+p-1}\right)^{1-\frac{1}{p}} \rightarrow 0 \text { as } k \rightarrow \infty,
\end{aligned}
$$

which completes the proof.

Corollary 3.11. Let H be a real Hilbert space of dimension greater than 1 and $k \in \mathbb{N}$. Then $n_{m}^{(k)}(H)=n_{s}^{(k)}(H)=n_{p}^{(k)}(H)=0$.

Proof. Since $n_{p}^{(1)}(H)=0$, by Proposition 2.5 of [CGKM2], $n_{p}^{(k)}(H)=0$. By Corollary 3.8 we have $0 \leq n_{m}^{(k)}(H) \leq n_{s}^{(k)}(H) \leq n_{p}^{(k)}(H)=0$.

Corollary 3.12. Let H be a complex Hilbert space of dimension greater than 1 . Then $n_{p}^{(2)}(H)=n_{s}^{(2)}(H) \leq \frac{1}{2}$.
Proof. We claim that $\|\check{P}\|=\|P\|$ for each $P \in \mathcal{P}\left({ }^{2} H: H\right)$. Let $P \in \mathcal{P}\left({ }^{2} H: H\right)$. It is enough to show that $\|\check{P}\| \leq\|P\|$. Since $\check{P}(x, y)=\frac{1}{4} P(x+y)-\frac{1}{4} P(x-y)$, we have for $x, y \in B_{H}$, by the parallelogram identity,

$$
\|\check{P}(x, y)\| \leq \frac{1}{4}\|P\|\left(\|x+y\|^{2}+\|x-y\|^{2}\right)
$$

showing $\|\check{P}\|=\|P\|$. Thus we have $n_{s}^{(2)}(H)=n_{p}^{(2)}(H)$. Since $n_{p}^{(1)}(H) \leq \frac{1}{2}$, by Proposition 2.5 of [CGKM2], $n_{s}^{(2)}(H)=n_{p}^{(2)}(H) \leq \frac{1}{2}$.

For a Banach space E and $k \in \mathbb{N}$, we define $[\mathrm{K}]$

$$
\mathbb{K}(k: E):=\inf \left\{M>0:\|A\| \leq M\|\widehat{A}\| \text { for every } A \in \mathcal{L}_{s}\left({ }^{k} E\right)\right\}
$$

It is well-known that $1 \leq \mathbb{K}(k: E) \leq \frac{k^{k}}{k!}$. By Lemma 3.1 of $[\mathrm{K}]$, we have

$$
\begin{aligned}
\mathbb{K}(k: E) & =\inf \left\{M>0:\|A\| \leq M\|\widehat{A}\| \text { for every } \mathrm{A} \in \mathcal{L}_{s}\left({ }^{k} E: E\right)\right\} \\
& =\frac{1}{\inf \left\{\|\widehat{A}\|: A \in \mathcal{L}_{s}\left({ }^{k} E: E\right),\|A\|=1\right\}}
\end{aligned}
$$

Lemma 3.13. ([K], Theorem 3.4) Let $k \in \mathbb{N}$. Suppose that E is a Banach space such that $v(\check{P})=v(P)$ for each $P \in \mathcal{P}\left({ }^{k} E: E\right)$, where \check{P} is the associated continuous symmetric k-linear mapping to P. Then $n_{p}^{(k)}(E) \leq \mathbb{K}(k: E) n_{s}^{(k)}(E)$.

Lemma 3.14. ([S], Theorem 3) Let $k \geq 2$.
Then: (1) For $1 \leq p \leq \frac{k}{k-1}$ we have

$$
\mathbb{K}\left(k: L_{p}(\mu)\right) \leq \frac{k^{\frac{k}{p}}}{k!}
$$

(2) for $p \geq k$ we have

$$
\mathbb{K}\left(k: L_{p}(\mu)\right) \leq \frac{k^{\frac{k}{q}}}{k!}
$$

where $q>1$ is the real number such that $\frac{1}{p}+\frac{1}{q}=1$.
Theorem 3.15. Let $k \geq 2$.
Then: (1) For $1 \leq p \leq \frac{k}{k-1}$ we have

$$
n_{p}^{(k)}\left(L_{p}(\mu)\right) \leq \frac{k^{\frac{k}{p}}}{k!} n_{s}^{(k)}\left(L_{p}(\mu)\right)
$$

(2) for $p \geq k$ we have

$$
n_{p}^{(k)}\left(L_{p}(\mu)\right) \leq \frac{k^{\frac{k}{q}}}{k!} n_{s}^{(k)}\left(L_{p}(\mu)\right)
$$

where $q>1$ is the real number such that $\frac{1}{p}+\frac{1}{q}=1$.

Proof. It follows from Lemmas 3.13-14.

Corollary 3.16. Let $k \in \mathbb{N}$ be a power of 2. Then $n_{s}^{(k)}\left(L_{2}(\mu)\right)=n_{p}^{(k)}\left(L_{2}(\mu)\right)$ for a complex $L_{2}(\mu)$ space.

Proof. By a result of Harris $[\mathrm{H}], \mathbb{K}\left(k: L_{2}(\mu)\right)=1$ for a complex $L_{2}(\mu)$ space. Hence $\|A\|=\|\widehat{A}\|$ for any $A \in \mathcal{L}\left({ }^{k} L_{2}(\mu): L_{2}(\mu)\right)$. By Theorem 3.7, $v(A)=v(\widehat{A})$ for any $A \in \mathcal{L}\left({ }^{k} L_{2}(\mu): L_{2}(\mu)\right)$, which completes the proof.

Corollary 3.17. Let H be a separable Hilbert space of dimension greater than 1. Let $k \in \mathbb{N}$ be a power of 2. Then $n_{s}^{(k)}(H)=n_{p}^{(k)}(H)$.

Proof. By the Riesz-Fischer theorem, H is isometrically isometric to l_{2}. If H is a real Hilbert space, by Corollary 3.11, we have

$$
n_{s}^{(k)}(H)=0=n_{p}^{(k)}(H)
$$

If H is a complex Hilbert space, by Corollary 3.16, we have

$$
n_{s}^{(k)}(H)=n_{s}^{(k)}\left(l_{2}\right)=n_{p}^{(k)}\left(l_{2}\right)=n_{p}^{(k)}(H)
$$

Proposition 3.18. Let $I=m, s, p$. Then
(1) $n_{I}^{(k)}\left(L_{p}[0,1]\right)$ is an increasing function of p over the range $1 \leq p \leq 2$;
(2) $n_{I}^{(k)}\left(L_{p}[0,1]\right)$ is a decreasing function of p over the range $2 \leq p<\infty$.

Proof. Let $1 \leq p \leq r \leq 2$. Note that $L_{r}[0,1]$ can be embedded isometrically into $L_{p}[0,1]$ (see [LT], p. 139). Since if M and N are closed subspaces of a Banach space E, then $\left(M \oplus_{l_{1}} N\right)^{*}=M^{*} \oplus_{l_{\infty}} N^{*}$, by Theorem 3.7 of $[\mathrm{K}], n_{i}^{(k)}\left(L_{p}[0,1]\right)$ is an increasing function of p over the range $1 \leq p \leq 2$. Let $p^{\prime}, r^{\prime} \in \mathbb{R}$ such that $\frac{1}{p}+\frac{1}{p^{\prime}}=1=\frac{1}{r}+\frac{1}{r^{\prime}}$. Then $2 \leq r^{\prime} \leq p^{\prime}<\infty$. Since $\left(L_{r}[0,1]\right)^{*}=L_{r^{\prime}}[0,1]$ can be embedded isometrically into $\left(L_{p}[0,1]\right)^{*}=L_{p^{\prime}}[0,1]$, by Theorem 3.7 of $[\mathrm{K}]$, $n_{I}^{(k)}\left(L_{p^{\prime}}[0,1]\right) \leq n_{I}^{(k)}\left(L_{r^{\prime}}[0,1]\right)$, showing (2).

References

[AB] R. Aron and P. Berner, A Hahn-Banach extension theorem for analytic functions, Bull. Soc. Math. France 106 (1978), 3-24.
[B] B. BollobÁs, An extension to the theorem of Bishop and Phelps, Bull. London Math. Soc. 2 (1970), 181-182.
[BD] F.F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser., Vol. 10, Cambridge Univ. Press, Cambridge, 1973.
[CDKM1] Y.S. Choi, D. García, S.G. Kim and M. Maestre, Norm or numerical radius attaining mappings on $C(K)$, J. Math. Anal. Appl. 295 (2004), 80-96.
[CDKM2] , The polynomial numerical index of a Banach space, Proc. Edinburgh Math. Soc. 49 (2006), 39-52.
[CDKM3] \qquad , Composition, numerical range and Aron-Berner extension, Math. Scand. 103 (2008), 97-110.
[CK] Y.S. Choi and S.G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc. 54 (1996), 135-147.
[D] S. Dineen, Complex analysis on infinite dimensional spaces, Springer-Verlag, London, 1999.
[DMPW] J. Duncan, C.M. McGregor, J.D. Pryce and A.J. White, The numerical index of a normed space, J. London Math. Soc. 2 (1970), 481-488.
[FMP] C. Finet, M. Martín and R. PayÁ, Numerical index and renorming, Proc. Amer. Math. Soc. 131 (2003), 871-877.
[H] L.A. Harris, Bounds on the derivatives of holomorphic functions of vectors, Analyse fonctionnelle et applications, Actualités Sci. Indust., no. 1367, pp. 145163, Hermann, Paris, 1975.
[K] S.G. Kim, Three kinds of numerical indices of a Banach space, Math. Proc. Royal Irish Acad. 112A (2012), 21-35.
[KMM] S.G. Kim, M. Martin and J. Meri, On the polynomial numerical index of the real spaces c_{0}, l_{1} and l_{∞}, J. Math. Anal. Appl. 337 (2008), 98-106.
[L] H.J. Lee, Banach spaces with the polynomial numerical index 1, Bull. London Math. Soc. 40 (2008), 193-198.
[LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Lecture Notes in Math., Vol. 338, Springer-Verlag, Berlin/New York, 1973.
[LMP] G. López, M. Martín and R. Payá, Real Banach spaces with numerical index 1, Bull. London Math. Soc. 31 (1999), 207-212.
[Lu] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100, (1961), 29-43.
[MP] M. Martín and R. PayÁ, Numerical index of vector-valued function spaces, Studia Math. 142 (2000), 269-280.
[S] I. Sarantopoulos, Estimates for polynomial norms on $L_{p}(\mu)$ spaces, Math. Proc. Cambridge Phil. Soc. 99 (1986), 263-271.

Received 14 October, 2012.

[^0]: *This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013R1A1A2057788).

